Pulling it all together From protein sequences to PPI networks and beyond

Tamás Korcsmáros

Early research career

- Started as a high-school research student
- 4 years at a medical biochemistry lab
- MSc in biochemistry and molecular biology
- PhD on metazoan signalling networks

Why I am interested in PPIs?

Thematics

From pathways to networks

Visualization challenges and solutions

Extending pathways

- Data integration
- Power of prediction

Use cases for data integration

- NRF2ome
- SignaLink 2

Signalling pathways and networks

Input Ligands

Pathway mediators (cross-talk proteins)

Output

Transcription factors

Problems and challenges in signalling pathway databases

- Pathway definitions are not identical
- Curation rules are not uniform
- Not enough and identical details / sources
- Cross-talks and overlaps (multi-pathway proteins) cannot be examined (easily)

Case study I. - the SignaLink database

http://SignaLink.org

- 3 metazoans
- 8 biochemically defined pathways
- Manually curated, uniform curation rules
- All interactions are directed and link to experimental research articles
- Contains multi-pathway proteins and cross-talks
- Versions: 2006, 2008, 2012*

Compared to 3 pathway databases

SignaLink contains the highest number of proteins, interactions, cross-talks and literature sources (between the examined pathways)

Allows the system-level examination of the signalling network

Curation protocol of SignaLink

Compilation of SignaLinl

Network of signalling pathways

How can we visualize cross-talks?

Network of signalling pathways

1) Color-coded protein-protein interaction network

Cross-talk networks in 3 metazoans

Detailed cross-talk networks in 3 metazoans

Visualizing cross-talk expressions

Identification of tissue-, disease-, and cell-type specific cross-talks

Further cross-talk analyses and visualizations

Multi-pathway proteins and the direction of signalling flow

A solution for the contradictions?

- Many cell types and phenotypes
- But relatively low number of signalling proteins
- Relatively low number of signalling pathways

Combinatorial problems

- Protein isoforms
- Alternative splicing
- Post-translational sites

Insulating mechanisms to regulate signalling flow

Precise regulation of signalling pathways is important.

Extending signalling pathways

Regulation of signalling duration

Kinases, phosphatases, ubiquitinligases, peptidases, etc.

- Reversible or irreversible modulation of specific proteins
- Priming, activation, temporal de-activation, cleavage, destruction, etc.

Resources of post-translational modifications (PTMs)

- NetworKIN (http://networkin.info)
- Phosphosite (http://phosphosite.org)
- dbPTM (<u>http://dbptm.mbc.nctu.edu.tw</u>)
- ELM server (http://elm.eu.org)
- ...

Specificity?

						U										
1-		G			P	P	ER LMO	S	P	PTG	P	P	G P	GAST	PZ01	-1
0-	R				B					Ê					X	-0
-1- N	345 '-	inpu φ	t sequ	4 neuce	s ကု	-5	7	0	_	7	ო	4	2	9	7	C ₁
														www.	phosphosite	.org

Target motifs

	•	•	
Sequence	Start	End	Subsequence
NCF1_HUMAN	363	368	TQRSKPQ <u>PAVPPR</u> PSADLIL
POLG_HCVJA	2323	2328	LPSTKAP <u>PIPPPR</u> RKRTVVL
FAK1_MOUSE	750	755	SGGSDEA <u>PPKPSR</u> PGYPSPR
DYN1_HUMAN	833	838	FGPPPQV <mark>PSRPNP</mark> APPGVPS
P85A_HUMAN	3(8	313	RQFAPAL <mark>PE KAPK</mark> PTTVANN
P85A_HUMAN	305	310	WNERQPAPALPPK PPKPTTV
RPGF1_HUMAN	284	289	VVDNSPP <u>PALPPK</u> KRQSAPS
PTN22_MOUSE	614	619	RTDDEIP <u>PPLPER</u> TPESFIV
NEF_HV1BR	72	77	EVGFPVT <u>PQVPLR</u> PMTYKAA
PAK1_RAT	13	18	LDVQDKP <u>PAPPMR</u> NTSTMIG
SOS1_HUMAN	1152	1157	DEVPVPP <u>PVPPRR</u> RPESAPA

Spatial regulation of signalling by endocytosis

Specific down-regulation, recycling, destruction or signal modulation by general and cargo-specific factors

An opinion: Cross-talk endosomes

Regulating the expression of signalling components

Transcriptional regulation

- Activation or inhibition of specific gene expression by transcription factor – transcription factor binding site connection
- JASPAR (http://jaspar.genereg.net)
- TFe (<u>http://cisreg.ca/cgi-bin/tfe/home.pl</u>)
- HTRIdb (http://www.lbbc.ibb.unesp.br/htri)
- PAZAR (http://pazar.info)

Post-transcriptional regulation

- Destruction or inhibition of specific mRNAs by miRNAs
- miRBase (http://mirbase.org)
- miRGen (http://diana.cslab.ece.ntua.gr/mirgen)
- miRecords (<u>http://mirecords.umn.edu/miRecords</u>)
- TarBase (http://www.microrna.gr/tarbase)

Specificity?

TF-TFBS target motifs

mRNA-miRNA binding

An important issue: tissue specificity

- High-resolution images
- Spatial distribution of proteins
- 44 different normal human tissues and 20 different cancer types
- 46 different human cell lines

Human Protein Atlas http://proteinatlas.org

Legends:

Types of networks:

Legends:

Types of networks:

Embedding pathways into interaction networks

Where can I find PPIs to connect with my pathway?

The power of prediction

Applying sequence and structural information to predict novel functions / connections

Predicted interactions

- Homology/orthology-based (interologs)
- Domain-motifs based (directed)
- Domain-domain based (interaction & direction)

Predicted interactions

- Homology/orthology-based (interologs)
- Domain-motifs based (directed)

Domain-domain based (interaction & direction).

Predicted interactions

- Homology/orthology-based (interologs)
- Domain-motifs based (directed)

Domain-domain based (interaction & direction).

Predicted interactions

- Homology/orthology-based (interologs)
- Domain-motifs based (directed)
- Domain-domain based (interaction & direction)

Protein sequence of a protein of interest (eg., from UniProt)

Domain-motif database (eg., ELM server)

Enzymatic domain capable to target the protein

Predicted PPI based on domain-motif interaction

Predicted interactions

- Homology/orthology-based (interologs)
- Domain-motifs based (directed)
- Domain-domain based (interaction & direction)

Domain-domain interaction data (eg., DOMINE)

Protein-domain composition data (eg., PFAM)

Possible domain pairs

Predicted PPI based on domain-domain interaction

Predicted interactions

- Homology/orthology-based (interologs)
- Domain-motifs based (directed)
- Domain-domain based (interaction & direction)

Liu et al., MCP (2009) and Rhodes et al., Nature Biotechnology (2005)

Predicted interactions

- Homology/orthology-based (interologs)
- Domain-motifs based (directed)
- Domain-domain based (interaction & direction)

$$F(\bullet - \bullet) = \frac{\Pr(\bullet - \bullet) - \Pr(\bullet - \bullet)}{\Pr(\bullet) \times \Pr(\bullet)}$$

Domain composition as training set (eg., PFAM)

Liu et al., MCP (2009) and Rhodes et al., Nature Biotechnology (2005)

Predicted interactions

- Homology/orthology-based (interologs)
- Domain-motifs based (directed)
- Domain-domain based (interaction & direction)

$$F(d_{mn}) = \frac{\Pr(d_m \to d_n) - \Pr(d_n \to d_m)}{\Pr(d_m) \times \Pr(d_n)}$$

Domain composition as training set (eg., PFAM)

Liu et al., MCP (2009) and Rhodes et al., Nature Biotechnology (2005)

Two use cases for data integration

NRF2 interactome & regulome

Inflammation

Ageing

• Diseases with oxidative stress

Reconstructing the NRF2 interactome

Distribution of the NRF2 interactors by sources

Reconstructing the NRF2 interactome

Papp et al. (Korcsmaros), FEBS Letters (2012)

Reconstructing the NRF2 regulome

Reconstructing an integrated NRF2 network

SignaLink 2.0

search download tools publications people contact

search download tools publications contact

search download tools publications people contact

Discussion

Thank you for your attention!

Tamas.Korcsmaros@tgac.ac.uk

Signalling Networks: From data to modelling

Monday 25 to Friday 29 January 2016

The Genome Analysis Centre, Norwich, UK

Introduction and hands-on training about pathway resources, tools and modelling approaches from expert researchers

Course Faculty

Laurence Calzone

Institut Curie (France)

Tamas Korcsmaros

TGAC (UK)

Pablo Porras

EMBL-EBI

Julio Saez-Rodriguez

JRC for Computational Biomedicine (Germany)

Jean-Marc Schwartz

Univ. of Manchester (UK)

Denes Turei

EMBL-EBI

You will learn about

Reliable signalling databases

Cytoscape

Network reconstruction

Pathway visualisation

Model building

Logic modelling

Apply a model for your own work

http://tinyurl.com/signet16

Registration closes 30 October 2015

No programming skills and modelling background are required.