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Abstract Signaling pathways control a large variety of cellular processes and their
defects are often linked with diseases. Reliable analyses of these pathways need
uniform pathway definitions and curation rules applied to all pathways. Here, we
compare KEGG, Reactome, Netpath and SignaLink pathway databases and examine
their usefulness in systems-level analysis. Further on, we show that the integration of
various bioinformatics databases allows a comprehensive understanding of the
regulatory processes that control signaling pathways. We also discuss the drug target
relevance of cross-talking (i.e., multi-pathway) proteins and signal transduction
regulators (e.g., phophatases and miRNAs). Accordingly, modern integrated dat-
abases are not only essential for studying signaling processes at the systems level, but
will also serve as invaluable tools for pharmacology and network-based medicine.

Keywords Signaling � Cross-talk � Regulation � Drug discovery � Network �
Pathway � miRNA � Drug targeting � Pathway database

Acronyms

HTP High-throughput
PPI Protein-protein interaction
TF Transcription factor
TFBS Transcription factor binding site
miRNA microRNA

M. Pálfy � L. Földvári-Nagy � D. Módos � T. Korcsmáros (&)
Department of Genetics, Eötvös Loránd University, Budapest, Hungary
e-mail: korcsmaros@netbiol.elte.hu, palfy.mate@gmail.com, foldvari-nagi@netbiol.elte.hu,
dezso.modos@netbiol.elte.hu

D. Módos � K. Lenti
Department of Morphology and Physiology, Faculty of Health Sciences,
Semmelweis University, Budapest, Hungary
e-mail: dr.lenti.kata@gmail.com

A. Prokop and B. Csukás (eds.), Systems Biology,
DOI: 10.1007/978-94-007-6803-1_16,
� Springer Science+Business Media Dordrecht 2013

463



16.1 Signaling Pathways and Cross-Talks

Intracellular signaling, from the simplest cascades to the highly intertwined net-
works of kinases, contributes to the diversity of developmental programs and
adaptation responses in metazoans [1]. In humans, defects in intracellular signaling
can cause various diseases, e.g., cancer, neurodegeneration, or diabetes. Thus,
understanding the structure, function, and evolution of signal transduction is an
important task for both basic research and medicine.

Signaling pathways, the functional building blocks of intracellular signaling,
transmit extracellular information from ligands through receptors and mediators to
transcription factors, which induce specific gene expression changes. In contrast to
the wide variety of signaling functions and the macroscopic and microscopic
diversity of living forms, the number of signaling pathway types are relatively low
(a few dozen) [2]. The basic mechanisms of each pathway are conservative,
characteristic to large taxon groups, and present ubiquitously in different tissues [1,
2]. Interestingly, most of the pathways have a maximum of 10–20 protein com-
ponents [1]. These numbers apparently contradict to the number of cell types that
signaling pathways can create and maintain. The major sources to generate diverse
and complex signaling flow with such few pathways are specific co-factors and
positive/negative feedback loops [3, 4]. Over the past decade, it has been realized
that signaling pathways are highly structured and rich in cross-talks (where cross-
talk is defined here as a directed physical interaction between pathways) ([84],
[5]). Cross-talks can form and change more frequently than the interactions within
pathways [6, 7]. As the number and combination of transducable signals are
limited, new cross-talks between pathways can create novel input/output combi-
nations, which increase the possible ways of signaling flow and thus contribute to
diverse phenotypes.

However, to ensure that an appropriate response is elicited, the signaling system
has to maintain the pathways’ output specificity (inputs preferentially activate their
own output) and input fidelity (outputs preferentially respond to their own input) [8].
Thus, new interactions between pathways need to be precisely regulated. Regulation
of cross-talks to prevent ‘leaking’ or ‘spillover’ can be achieved with different
insulating mechanisms [8]. Signaling cross-talks are controlled mainly by scaffold
proteins, cross-pathway inhibitions, kinetic insulation, and the spatial and temporal
expression patterns of proteins [4, 9–11]. One can find all these mechanisms in the
concept of critical nodes, defined by Kahn and co-workers, and demonstrated for the
insulin pathway [12]. Critical nodes are defined as protein groups, where the
members are (1) essential in the signal transduction of a given pathway, (2) related to
each other (isoforms), (3) regulated and function in a partially different way, and
where (4) at least one of the members participates in a cross-talk with another
pathway [12]. The relative concentration of the critical node members and their
differential regulation determine the way of the signaling flow [12]. The default way
of signaling flow is from a pathway-specific ligand via a critical node to a pathway-
specific transcription factor. But when a critical node contains multiple protein
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isoforms, which include a member that can cross-talk, the signal can be switched to
another pathway, i.e., generating another output. Consequently, two pathways can
specifically cross-talk with a shared protein group, where the partially regulated
protein isoforms serve as a source of divergence [12].

16.2 Challenges to Study Cross-Talk at the Systems-Level

Despite the general prevalence of network approaches, the definition of pathways
has seen little change. As structural, functional, tissue- and disease-specific aspects
come into consideration while identifying individual pathways, these differing
aspects also have to be taken into account when studying cross-talks. Different
studies address the role of cross-talks in the context of distinct cell fates, cell types,
single or multiple pathways. In Table 16.1 we list some examples for these dif-
ferent approaches.

Nowadays, systems-level and network-based methods have started to dominate
the study of signaling pathways, accordingly the systems level analyses of cross-
talks has become a major task. First of all, this requires a precise definition of
pathways and pathway borders. By reviewing the major issues of studying cross-
talks at the systems level, Gerstein and colleges point out that pathways compiled
from different systems and constructed for distinct purposes are not suitable for
examining cross-talks [13]. Bauer-Mehren et al. came to the same conclusion
while testing the cPath integrated database [14] and argue the need of new dat-
abases that make the study of cross-talks possible at the systems level [15]. These
require a compilation based on general principles and importantly, the use of
standardized methods. Among these, high-throughput (HTP) methods provide the
greatest number of protein–protein interactions (PPIs) and are therefore commonly
used in network biology research. However, for methodological reasons, these
HTP screens are unable to reveal interactions of extracellular, membrane-bound
and nuclear proteins—all of them important players in signal transduction. A
further problem of PPIs from HTP data is that they are mostly undirected, while
most of the reactions in the signaling network are directed.

Due to these limitations, manually curated databases have emerged as indis-
pensable tools for systems-level research of signaling pathways. Although usually
containing less information, they are more detailed and reliable. However, most of
these curated signaling databases both lack a precise definition of the pathways and
a standardized curation protocol. Consequently, it is difficult to compare the dis-
tinct pathways even within the same database, or to analyze interactions between
pathways. For extensive cross-talk analysis, a signaling database is required, that:
(1) has a structure fulfilling the modern requirements of systems biology; (2) is
objective and contains uniformly defined pathways; (3) contains sufficient and
reliable network information. Additionally, if the above criteria apply to multiple
species, this further allows prediction of new proteins, protein functions, and PPIs
based on orthology.
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Table 16.1 Examples of different approaches for the analysis of cross-talks ordered in growing
complexity

Cross-talk studies Cross-talking signaling
pathways

References Type and details
of the reference(s)

Modeling cross-talks in a
single pathway

Hyperosmolar and pheromone
MAPK pathway

[70] Research article on
mathematical
modeling and
experimental
validation

Cross-talks of a single
pathway in healthy
cell types

Cross-talks of TGF-b/BMP
with MAPK, PI3K/Akt,
WNT, Hh, notch, IL/TNF-
b/IFN-c pathways;

Cross-talks of notch with Hh,
JAK-STAT,TGF-b, RTK,
WNT pathways

[71, 72] Review articles

Cross-talks of a single
pathway in stem-cells

Cross-talk of WNT pathway
with FGF, notch pathways

[73] Review article

Cross-talks of two
pathways

EGF and Insulin pathways;
PI3K and ERK(MAPK)
pathways

[74, 75] Research articles on
computational
modeling and
experimental
validation

Cross-talks of specific
pathways in a specific
tissue

(many) [76] Research article

Interaction of multiple
pathways in stem
cells

Notch, WNT, TGF-b, BMP
pathways

[77] Review article

Coordination of multiple
pathways during
organ development

Hh, WNT, FGF, WNT, IGF;
EGF, notch, WNT

[86], [78,
79]

Review article

Cross-talk of multiple
pathways in an organ

Notch and WNT pathways [80] Research article on
experimental data

Cross-talk of multiple
pathways in the
development of
tumors

WNT, BMP, FGF, notch and
Hh pathways

[81] Review article

Interaction of multiple
pathways in normal
and stem cell
differentiation

JAK-STAT, notch, MAPK,
PI3 K/AKT, NF-jB, WNT,
TGF-b pathways

[85] Review article

Cross-talk of multiple (9)
pathways in a general
protein network

MAPK, TGF-b, notch, WNT,
Hh, mTOR, TLR, JAK-
STAT, VEGF pathways

[13] Review article

Extensive cross-talk
(580) of multiple
pathways in a general
protein network

(many) [82] Research article on
bioinformatic data

Cross-talks in
intercellular
communication of
two pathways in an
organ

FGF and BMP pathways [83] Research article on
experimental data

466 M. Pálfy et al.



16.3 Benchmarking Signaling Resources to Study
Cross-Talks

We examined 3 widely used, freely available general signaling pathway databases,
KEGG, Reactome and Netpath [16–19], and compared it with SignaLink, a
recently developed signaling pathway database intended for the analysis of sig-
naling cross-talks [6]. All four databases were constructed by utilizing different
sources and applying distinct methods, hence they greatly vary in a number of
aspects. KEGG contains pathway information from a large number of species,
whereas SignaLink deals only with data from the model organisms Caenorhabditis
elegans, Drosophila melanogaster and from human. In contrast, the data collected
in the Reactome and Netpath databases are restricted to human signaling path-
ways. In case of KEGG there is no clear pathway definition, thus, what is con-
sidered as an individual pathway is decided by the curator. In Netpath 10 immune
and 10 cancer signaling pathways were curated based on PPI data from the HPRD
resource [18, 19]. In contrast, the Reactome and SignaLink databases feature a
unified and available protocol for data collection. The pathways in SignaLink are
biochemically and evolutionarily defined and are identical with the pathway
grouping of [1]. It is important to note, that solely in virtue of the number of
pathways, these databases are not comparable. For example, in the SignaLink
database, the EGF/MAPK pathway contains the proteins and interactions between
the EGF ligand and the terminal MAPK proteins. While the grouping of these
interactions and proteins into a single pathway is biochemically and evolutionarily
reasonable, many databases scatter this pathway across many (sub)pathways (e.g.,
EGFR, RAS, p38, JNK, ERK, ASK). Although a relevant and objective pathway
definition decreases the overall number of pathways in the database, it avoids
artificial and biased pathway grouping.

An important aspect in manually curated databases is the assignment of proteins
to signaling pathways. In the Reactome and Netpath databases, this is entirely
dependent on individual experts who construct the pathways, but no references are
provided for the users. Similarly, in the KEGG and SignaLink pathways, to which
pathway a protein is annotated is decided by curators, but importantly, their
decision is based on published review papers from experts of the given pathway.
While KEGG collects the information from only a few (usually 5–10) reviews,
SignaLink uses 20–25 reviews per pathway and also adds additional PPI infor-
mation based on orthology. The reliability and utility of databases greatly depends
on the availability of published references, which underlie every single protein–
protein interaction. This is accessible for every interaction in the Reactome,
NetPath and SignaLink databases, however, KEGG only refers to review papers.

By comparing all 4 databases, SignaLink showed the largest overlap with the
other databases and contained the most references from the literature. Therefore,
we set SignaLink against the other databases comparing 7 human signal trans-
duction pathways in SignaLink (EGF/MAPK, IGF, Hedgehog, JAK/STAT, Notch,
TGF-b, WNT) with 7 human signaling pathways from KEGG (MAPK, Insulin,
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Hedgehog, JAK/STAT, Notch, TGF-b, WNT), 5 pathways from Reactome
(EGFR, Insulin receptor, Notch, TGF, WNT) and 5 pathways from NetPath
(EGFR1, Hedgehog, Notch, TGF, WNT). Regarding the number of proteins found
in the pathways, the 7 pathways in KEGG have 17 % less, the 5 pathways in
Reactome have 84 % less, while the 5 pathways in Netpath contain approximately
the same number of proteins as in the corresponding pathways in SignaLink. In the
case of so-called multi-pathway proteins [20], which participate in multiple
pathways and function in cross-talks, KEGG contains about the same number as
SignaLink, whereas only half of these types of proteins can be found in Reactome
and Netpath.

In comparing the number of PPIs, KEGG contains 52 % more interactions than
SignaLink, but notably, most of these interactions are artificial, as they were
obtained indirectly using a matrix method [21]. Interestingly, the number of cross-
talks linking distinct signaling pathways is about the same in SignaLink and
KEGG, therefore, the relative amount of cross-talks in SignaLink is probably
higher. In Reactome, when including all interactions within protein complexes,
this database has up to two times as many PPIsas SignaLink in overall, however,
without the protein complexes, the number of interactions is roughly equal.
Regarding the number of cross-talks, SignaLink contains almost three times as
many as Reactome, and this is not influenced by the presence of interactions within
protein complexes. In comparison to Netpath, SignaLink contains about three
times as many cross-talks, 1.5 times as many PPIs, while the number of proteins is
approximately the same, albeit with only about 30 % overlap between the two
databases [6].

Based on this comparison we can conclude, that the major advantage of Sig-
naLink over the other three databases is that it features precisely defined signaling
pathways, has detailed criteria for assigning proteins to pathways and uses a
unified curation method which makes a systems-wide analysis of signaling path-
ways possible. Furthermore, within the signaling pathways shared by all four
databases, SignaLink contains the most proteins, interactions and references. This
makes SignaLink an excellent resource for taking on the new challenges of signal
transduction research and for the efficient study of cross-talks.

16.4 Extending Signaling Pathways with Regulatory
Processes

Signaling networks can be divided into upstream and downstream subnetworks.
The upstream subnetwork contains the intertwined network of signaling pathways,
presented earlier, while the downstream, gene regulatory subnetwork (GRN)
contains transcription factor binding sites, transcription factors and microRNAs,
ultimately controlling global gene expression and the dynamics of protein output
in a living cell [22] (Fig. 16.1). The GRN can further be divided into
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transcriptional and post-transcriptional subnetworks. At the transcriptional level,
transcription factors (TFs) bind specific regions of DNA sequences (called tran-
scription factor binding sites (TFBS) or response elements) and regulate the
mRNA expression of transcription factor target genes. Post-transcriptionally, mi-
croRNAs (miRNAs) regulate gene expression by binding to complementary
sequences (i.e., miRNA binding-sites) on target mRNAs. The specific binding of a
miRNA to its target mRNA can suspend or permanently repress the translation of a
given transcript, thereby specifically inhibiting protein production [23, 24].
Despite the difficulties of identifying miRNA targets, it is predicted that nearly all
human genes can be controlled by at least one miRNA [25] and mutations in many
miRNA coding genes have pathological consequences [26]. The importance of
miRNAs in the regulation of protein–protein networks was highlighted by a
positive correlation between the number of repressing miRNAs and the protein
partners (i.e., degree) of a given protein [27]. Thus, proteins having many inter-
actors (i.e., protein hubs) are more tightly regulated than proteins with less in-
teractors [27]. In addition, a comprehensive analysis suggested that specific
biological processes are regulated by miRNAs through targeting the hub and
bottleneck proteins of the protein interaction network [28].

Recently, many databases comprising the downstream regulatory subnetwork
components of signaling pathways have been created. A compendium of human
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Fig. 16.1 Layers of the signaling network. In the upstream part the network of signaling
pathways contains the incoming signals (ligands) that activate receptors and mediator proteins to
reach the transcription factors in the nucleus. In the nucleus, the downstream, gene regulatory
network (GRN) contains four layers (networks): the network of transcription factors (TFs), the
network of TFs and their binding site in the promoter region of certain genes, the network
between these regions and their transcripts, and the network of microRNAs (miRNAs) and their
target mRNAs
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TFs have been collected and analyzed in [29], while their regulatory interactions
can be acquired from the resources JASPAR, MPromDB, PAZAR and OregAnno
[30–33]. Experimentally validated miRNA-mRNA interactions are available from
TarBase [34], while predicted interactions can be accessed at TargetScan and
PicTar [35, 36]. TransMir and PutMir contain TF-miRNA regulatory information
to examine how miRNAs are regulated [37, 38]. In addition, miRecords and
miRGen provide an integrated resource from where different miRNA-related
resources can be accessed [39, 40]. To examine the signaling network in a unified
fashion, integrated resources including IntegromeDB and TranscriptomeBrowser
3.0 have been developed, which allow the examination of all layers from signaling
pathways to miRNAs through TFs [41, 42].

As an update for SignaLink, we have recently developed an integrated database
on the regulation of signaling, containing information from C. elegans, D. mela-
nogaster, and humans (BMC Syst Biol. 7:1752-0509-7-7). Signaling pathway
information from SignaLink was integrated with major processes that regulate
signaling. First, on the bases of manual curation of primary literature and reviews,
we linked scaffold proteins, specific ubiquitin-ligases, and proteins involved in
endocytosis to pathway proteins. Next, we extended the network with the first
neighbors of the proteins based on directed protein–protein interactions (PPI). The
PPI data was retrieved from BioGRID, DroID, and WI8. The direction and the
confidence for each interaction was calculated based on domain–domain and
domain-motif interactions. In the next step, we included the underlying regulatory
network: (1) downstream transcription factors and their subnetworks, based on
manual curation of primary literature; (2) interactions between transcription fac-
tors and transcription factor binding sites of genes, using OregAnno, JASPAR, and
MPromDB; (3) mRNA transcripts (from ENSEMBL), miRNA transcripts (from
miRBase, miRGen and PutmiR), and their interactions (from miRecords and
Tarbase). The database can be freely downloaded for academic purposes in various
network file formats (BioPAX, SBML, CSV, etc.) via a BioMART-like download
page, where users can filter the datasets.

16.5 Pharmacological Relevance of Signaling Networks

Understanding the structure and mechanism of normal signaling networks can
reveal important targets for drug discovery. In many cases, these targets have no
direct relation to a particular disease but their stimulation or inhibition can have
beneficial systems-level effects on the cellular network, and lead to the survival of
the organism. Pharmacological modulation of key proteins of the signaling net-
work can influence the robustness of the cells for therapeutic purposes, e.g.,
increasing robustness in healthy cells and decreasing robustness in cancerous cells
during chemotherapy [43, 44]. Three members of the insulin signaling pathway
(PI3 kinase, AKT and IRS families) have already been identified as ‘critical nodes’
having distinctive roles in the junctions of signaling pathways and effecting the
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behavior of the cell during diabetes [12]. Hwang et al. developed the network
parameter bridging centrality to identify key proteins in signal flow-modulation as
promising drug targets [45]. The major strength of bridging centrality is that it
effectively combines local and global network properties. Proteins with high
bridging centrality (i.e., bridging nodes) are located in the critical sites of the
signaling network and connect different parts (regions or modules) to one another
[45]. They also found that many bridging nodes (e.g., SHC, JAK2, cortisol) had a
track record as effective drug targets [45].

On the other hand, gene expression and sequencing studies on pathologically
altered signaling networks can uncover possible drug targets whose malfunction
directly cause disease. For example, during tumorigenesis when cells acquire
continuous cell division and often increased mutation rate [46] most of the (driver)
mutations affect a limited number of central pathways [47]. Drug targeting of these
specific pathways could potentially prevent tumor growth. However, the devel-
opment of aggressive and malignant tumor cells cause a systems-level change in
the signaling network [48], thus their therapeutic treatment poses a major chal-
lenge. The pathological rewiring of the signaling network allows the appearance of
cancer hallmarks, including sustained angiogenesis and metastatic tissue invasion
capabilities [49], as well as the deregulation of cellular metabolism and avoidance
from immune destructions [50]. The effect of signaling rewiring on cancer hall-
marks was shown in prostate cancer [51]. Several works demonstrated that
changes of cross-talk (i.e., multi-pathway) proteins are important for the rewiring
of the signaling network [48, 52, 53]. Mutation even in one multi-pathway protein
can have a systems-level effect as it can significantly alter the signaling flow, for
example, transducing a ‘death’ signal to a ‘survival’ transcription factor [49, 54].
Similarly, we found a significant change in the expression level of multi-pathway
proteins in hepatocellular carcinoma [6]. Accordingly, multi-pathway proteins are
often altered in systems diseases such as cancer, thus, they are among the most
promising drug targets [20]. Pharmacological modification of these proteins can
re-transform the rewired cancerous signaling network.

Kinases are traditionally among the most targeted proteins of the cellular sig-
naling network [55] although their selective targeting is a challenge for drug
development. Kinase domains and their target motifs (i.e., specific amino acid
sequences in the substrate proteins) are well-known and comprehensively com-
piled in resources such as Phosphosite [56], NetworKIN and NetPhorest [57, 58].
Regulatory domains of these kinases and scaffold proteins are also important to
maintain kinase-substrate or scaffold-substrate specificity [59] but our systems-
level knowledge on these (undirected) protein–protein interactions are less limited
than the directed phosphorylation data.

It is important to highlight that less attention has been taken on the other players
of the phosphorylation system: the protein phoshatases. As reviewed by Kholo-
denko and colleagues [60], protein phosphatases can play a dominant role in
determining the spatio-temporal behavior of protein phosphorylation systems in
the cell as both immediate and delayed negative regulators. Thus, pharmacological
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targeting of phosphatases can modify the signaling network at the systems-level.
Despite their promising effect, only a few protein tyrosine phosphatases are cur-
rently used as therapeutic targets [61]. The development of drugs specifically
targeting phosphatases is much more complicated than the development of anti-
kinase drugs for the following reasons: (1) high-level of homology between
phosphatase domains limits the development of selective compounds; (2) contrary
to kinases, phosphatase substrate specificity is achieved through docking of the
phosphatase complex at a site distant from the dephosphorylated amino acid [62,
63]; (3) the targeted sequences are highly charged, and many of the developed
drug compounds cannot cross the membrane [64]. Resolved phosphatase-complex
structures and detailed knowledge of their enzymatic activity will allow effective
drug development and their utilization as systems-level drug targets.

Recently, miRNAs have been recognized as highly promising, non-protein
intervention points in the signaling network. Therapeutic targeting of regulatory
components is a challenging task because of specificity and pharmacological
availability (i.e., therapeutic agents often have off-target effects and hardly enter
the nucleus). Pharmacological modulation of protein and miRNA expression with
an antisense strategy appears to be more specific than targeting TFs, TFBSs and
miRNA promoters [65]. Specificity comes from the fact that antisense strategy
affects single miRNAs and miRNA families that are specific for a given mRNA (or
mRNA cluster), while TFs and promoters have less specific effects on the whole
transcriptome [65].

Besides specificity, miRNAs can be important therapeutic targets, as their
down- or up-regulation is implicated in more than 270 diseases according to the
the Human MicroRNA Disease Database [66]. The diseases where altered
expression of miRNAs have been reported include cardiovascular, neurodegen-
erative diseases, viral infections like HIV and various types of cancer [67]. The
development of therapeutic strategies involving miRNAs requires the exploration
of the signaling network. Therapeutic miRNAs can only be selected if their
mRNA-interactions have been confidently identified and experimentally validated.
These interactions can be accessed in specific and integrated resources listed in the
previous section. In addition, evaluation of the cellular processes that are affected
by the given miRNA is also necessary to avoid side-effects and unwanted drug
effects. Web-services, such as Pathway Linker (http://PathwayLinker.org; [68])
have been developed for this purpose. As miRNAs often have multiple targets
analysis of the network of the affected proteins (encoded by target mRNAs) can
facilitate pharmacological development: identification of proteins whose knock-
down has limited side-effects and toxicity profiles can be promising agents for
miRNA-based therapeutics [65]. Such side-effects can be analyzed by databases
such as SIDER [69].
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16.6 Conclusion

The study of cross-talks has emerged as an important field in signal transduction
research. To identify cross-talks and understand their roles in development and
disease, one needs to analyze signaling networks at the systems level. Decades of
research on signaling pathways and modern high-throughput methods have pro-
vided large data sets on the signaling components. Still, only a small number of
databases fulfill the requirements of analyzing cross-talks at the systems level. By
comparing 4 signaling databases (KEGG, Reactome, Netpath and SignaLink) in
terms of pathway definition, curation methods, protein number, PPI number and
the number of cross-talks, we point out that the SignaLink database is a valuable
resource for cross-talk research. Signaling pathways are strictly regulated by
downstream components, including transcription factors and miRNAs. Informa-
tion on this gene regulatory subnetwork has been compiled into various databases
which serve specific needs. For a comprehensive analysis of signaling from ligand
binding to alterations in gene expression, integrated databases containing a great
number of regulatory components (including both posttranscriptional and post-
translational modifications) of signaling proteins are needed. These will contribute
to the understanding of systems biology diseases such as cancer, and help predict
more efficient drug targets for fighting against these diseases.
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