Homology 3D modeling and effect of mutations

Determination of protein structure

X-ray crystallography (70,714 in PDB) •need crystals

Nuclear Magnetic Resonance (NMR) (9,312)

- proteins in solution
- •lower size limit (600 aa)

Electron microscopy (422)Low resolution (>5A)

Determination of protein structure

resolution 2.4 A

Determination of protein structure

resolution 2.4 A

Structural genomics

Currently: 112K 3D structures from around 36K sequences 46M sequences in UniProt

only 0.08%!

Yearly Growth of Total Structures

Structural genomics

I PDB at a Glance 35264 Distinct Protein Sequences 27724 Structures of Human Sequences 7550 Nucleic Acid Containing Structures More Statistics

Currently: 112K 3D structures from around 36K sequences 46M sequences in UniProt

only 0.08%!

3D structure prediction Applications: target design

Query sequence

3D structure prediction Applications: fit to low res 3D

Query sequence 2

Query sequence 1

low resolution 3D (electron microscopy)

Domains

Protein domains are structural units (average 160 aa) that share:

Function Folding Evolution

Proteins normally are multidomain (average 300 aa)

Domains

Protein domains are structural units (average 160 aa) that share:

Function Folding Evolution

Proteins normally are multidomain (average 300 aa)

Domains

3D structure prediction Ab initio

Explore conformational space

Limit the number of atoms

Break the problem into fragments of sequence

Optimize hydrophobic residue burial and pairing of beta-strands

Limited success

3D structure prediction Threading

I-Tasser: Jeffrey Skolnick & Yang Zhang

Fold 66% sequences <200 aa long of low homology to PDB

Just submit your sequence and wait... (some days)

Output are predicted structures (PDB format)

Lee and Skolnick (2008) *Biophysical Journal* Roy et al (2010) *Nature Methods* Yang et al (2015) *Nature Methods*

3D structure prediction I-Tasser

Roy et al (2010) *Nature Methods*

3D structure prediction I-Tasser

	▼ <u>Optio</u>	n I: Assign	additional	restraints & templates t	o guide I-TASSER mod	deling.			
	Œ	ead more e	xulanation	on how to add restraint	5)				
			Re	sults of t	he I-TAS	SER ser	ver		
				(Models are k	ept on the server fo	or 365 days)			
		D		<<<123456789	<u>10 11 12 13 14 15 16</u>	<u>i 17 18 19 20 21></u> ;	<u>>></u>		
		n	<u>C</u>	lick here to search ta	argets in the I-TASS	ER server databa	ase		
ID	Protein	Name Leng	jth C-score	Estimated TM-score	Estimated RMSD(Å)	Submission date	User's email address	User's I	IP
<u>543019</u>	pjDHI	FR 208	6 NA	NA	NA	2010-04-08	xxx@duq.edu	165.190.44	I.xxx
				This job is running and	should be completed in	approximately 24hr	S.		
ID	Protein	Name Leng	jth C-score	Estimated TM-score	Estimated RMSD(Å)	Submission date	User's email address	User's I	IP
<u>543018</u>	EK17	-2 218	B NA	NA	NA	2010-04-08	xxx@berkeley.edu	128.32.8.	ХХХ
				This job is running and	should be completed in	approximately 24hr	S.		
ID	Protein	Name Leng	jth C-score	Estimated TM-score	Estimated RMSD(Å)	Submission date	User's email address	User's I	IP
<u>543017</u>	test	1 245	5 NA	NA	NA	2010-04-08	xxx@mdc-berlin.de	87.187.193	B.xxx
				This job is running and	should be completed in	approximately 24hr	s.		

http://zhanglab.ccmb.med.umich.edu/I-TASSER/

3D structure prediction I-Tasser

ID	Protein Name	Length	C-score	Estimated TM-score	Estimated RMSD(Å)	Submission date	User's email address	User's IP
<u>S42744</u>	1ijwC	52	0.67	0.80±0.09	1.5±1.4	2010-04-02	xxx@ntu.edu.tw	140.112.94.xxx
5	Submitted Se	equen	се					
	>2011	r prot	tein					
	Top 5 M	odels	predict	ed by I-TASSER				

Top 10 templates used by I-TASSER

	IIIC				Z- score	Align.		20 		40 	60 I
							Sec.Str Seq	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	CC <mark>HHHH</mark> CCCCCC <mark>HHH</mark> ILRHCENRGSPLMA	ihhhhhhhhhhhhhhh Eavteakslftlaf
1 1	<u>163uA</u>	0.11 (D.19	0.94	1.11	<u>Download</u>		ALGVERTRSETIYDEDEVLLGTF:	TTLVGGPEYVHCL	-ESLATVEETVVRD	KAVESLRAISHE
2	<u>163uA</u>	0.07 (D.19	0.98	2.58	<u>Download</u>		AAADGDDSLYLRNEDVQLRLNSII	KKLGVERTRSELLPH	LTDTIYDEDEVLL	ALAEQLPEYVHCLL
3	<u>163uA</u>	0.08 (D.19	0.97	1.27	<u>Download</u>		LTDTIYDEDEVLLALAEQLGTFT	FLVGGPEYVHCLLP	PLESLATVEETVVF	DKAVESLRAISHEH
4	<u>3dh4A</u>	0.10 (D.18	0.87	1.08	<u>Download</u>				GGGGGGGGGG	GGGGGGGGGGWWAVGA
5	<u>1qgrA</u>	0.08 (D.17	1.00	2.48	<u>Download</u>		MANPGNSTSKDLGTETYRPSCAE	IPVNQWPEL IPQLVA	ANVTNPNSTEHMKE	STLEAIGVICQDID
6	1pw4A	0.09 (D.19	0.80	1.18	<u>Download</u>		FI	KPAPHKARLPA	AEIDPT	YRRLRWQIFLGIFF
7	<u>ljdhA</u>	0.09 (0.20	0.92	2.42	<u>Download</u>			AVVNLIRAIPEI	TKLLNDEDQVVVN	IKAAVMVHQLSKKEA
8	<u>lialA</u>	0.09 (D.17	0.79	1.15	<u>Download</u>		DEQMLKRR	VVSNQGTVNWSVED I	IVKGINSNNLESQL	QATQAARKLLSRQP
9	<u>26kuB</u>	0.09 (D.17	1.00	2.35	Download		MIDENTKLNELVSKDSVKTQQFT	GAEQPCE <mark>S</mark> ADALVS:	SSNNGAQSTETSKA	VRLAALNALADSKN
10	<u>1wa5C</u>	0.08 (D.18	1.00	2.27	Download	54.0	MTQDGASTNLPWVDENGNHLLPLA	ASRL <mark>S</mark> NDDMVRPLF	RSDELFLEIKLVLD	VFTAPFLNLLKTVD

3D structure prediction QUARK

QUARK is a computer algorithm for ab initio protein folding and protein structure prediction, which aims to construct the correct protein 3D model from amino acid sequence only. QUARK models are built from small fragments (1-20 residues long) by replica-exchange Monte Carlo simulation under the guide of an atomic-level knowledge-based force field. <u>QUARK was ranked as the No 1 server in Free-modeling (FM) in CASP9</u>. Since no global template information is used in QUARK simulation, the server is suitable for proteins which are considered without homologous templates.

Go to Job Q12270 to view an example of QUARK output. The description of predicted feature files can be seen in readme.txt.

Cut and paste your sequence (in FASTA format, less than 200 AA. Please submit bigger proteins to I-TASSER Server):

Or upload the sequence from your local computer:

Choose File No file chosen

Email: (mandatory, where results will be sent to)

ID: (optional, your given name of the protein)

http://zhanglab.ccmb.med.umich.edu/QUARK/

3D structure prediction GenTHREADER

David Jones http://bioinf.cs.ucl.ac.uk/psipred/ Input sequence or MSA

Choose Prediction Methods	
PSIPRED v3.3 (Predict Secondary Structure)	DISOPRED3 & DISOPRED2 (Disorder Prediction)
GenTHREADER (Profile Based Fold Recognition)	MEMSAT3 & MEMSAT-SVM (Membrane Helix Prediction)
BioSerf v2.0 (Automated Homology Modelling)	DomPred (Protein Domain Prediction)
FFPred v2.0 (Eukaryotic Function Prediction)	GenTHREADER (Rapid Fold Recognition)
MEMPACK (SVM Prediction of TM Topology and Helix Packing)	pDomTHREADER (Fold Domain Recognition)
DomSerf v2.0 (Automated Domain Modelling by Homology)	
Help	
Input Sequence (Single sequence or Multiple Sequence ali	ignments; as raw sequence or fasta format)

Typically 30 minutes, up to two hours GenTHREADER Jones (1999) *J Mol Biol*

3D structure prediction GenTHREADER Output GenTHREADER

Co

MED

ЛЕI

ЛEI

MED

						1	190	200	210		220	230
nf	Net		BairE	Salv	1 F.D.O	нннннн	ннннн	CCCCCCCC	нннннннн	ннннс	CCCCHH	ннннннн
····	Score	p-value	Paire	301	1wa5BU Ouerv	LIRTATW	rLSNLC IGO	RGKKPQPD STDDDSAPI	WSVVSQALFTI LVHCVRLLSAS	SFLLTGGKNV	YSMDTE LVPDRDVRVS	VKALALSC <mark>V</mark>
					fort l		102					
								10	20	30	40	50
шил	45 4 16	0 001	_11n q	_13				240	250	260	270	
	45.410	0.001	-410.5	-13.		ниниссс-		240 HHHF	230 ННННННСССНІ	200 НИННИНИСС	270 Снининини	нининсс
					1™a5BO	SYLSDGP-		OEA1	TOAVIDVRIP	KRLVELLSHE	STLVOTPALR	AVGNTVT
					Query	GAAVALH	PESFFS	KLYKVPLDI	TTEYPEEQYVS	3DILNYIDHG	DPQVRGATAI	LCGTLICSI
							60	70	80	90	100	110
NUI	45.161	0.001	-466.0	-12.		200	`	200		200	210	220
		0.00				20L	, .ннннн	290 HHHHC	Синни	зоо	о 10 О 10	320 Нинссссии
					1™a5BO	GN	JDL.OTO	WVTNA	GVLPA	RULSSPKE	NTKKEACHTT	SNITAGNTE
					Query	LSRSRFH	/GDWMG	TIRTLIGNT	TFSLADCIPLI	LRKTLKDESS	VTCKLACTAV	RNCVMSLCS
						1	120	130	140	150	160	170
MUI	44.997	0.001	-390.3	-17.		220		240	250	260		270
						оос нннннни	сснин	340 ННННННСС	330 Снананана	360 НИНИНИНС-		370 СССС <mark>НН</mark>
					1wa5BO	OIOAVIDA	NLIPP	LVKLLEVAE	EYKTKKEACU.	AISNASSGG-		LORPDI
					Query	SSYSELGI	QLIID	VLTLENSSY	YWLVRTELLE'	FLAEIDFRLV	SFLEAKAENL	HRGAHHYTG
						i	180	190	200	210	220	230
NUI	43.639	0.002	-379.5	-12.	2 00.0	204	000	212	20000	a. 110.		
												19 - C.S.

3D structure prediction Phyre

http://www.sbg.bio.ic.ac.uk/phyre2/

Kelley et al (2000) *J Mol Biol* Kelley and Sternberg (2009) *Nature Protocols*

Protein Homology/analogY Recognition Engine V 2.0

Subsc	ribe to Phyre at Google	Groups
Email:		Subscribe
<u>Visit Ph</u>	<u>yre at Google Groups</u>	

What's New in Phyre2

E-mail Address		
Optional Job description		
Amino Acid Sequence 🖬		
Modelling Mode 耳	Normal 💿 Intensive 🔿	
	Phyre Search Reset	

Processing time can be hours

3D structure prediction Static solutions

Datasets of precomputed models / computations

Not flexible

Variable coverage

But you don't have to wait

3D structure prediction MODbase

Andrej Sali

http://modbase.compbio.ucsf.edu/

Mod	ModBase: Database of Comparative Protein Structure Models ⊿
• <u>s</u>	ali Lab Home • ModWeb • ModLoop • ModBase • ModEval • PCSS • FoXS • IMP • ModPipe •
ModBase H	ome ModBase Datasets for User:Anonymous User Login Help News Contact Current Datasets
<u>General Information</u> <u>Statistics and</u> <u>Genome Datasets</u> <u>News</u> Project Pages	ModBase Search ModBase is a database of comparative protein structure models, calculated by our modeling pipeline ModPipe. Search
<u>Authors and</u> <u>Acknowledgements</u>	Search type 🛛 Model(Default) 🔹 Display type 🖾 Model Detail (graphical) 💌
Publications	To include the academic (comprehensive) dataset, go to ' <u>Current Datasets</u> '!
<u>Related Resources</u>	All available datasets are selected 👔
Please address inquiries to: modbase@salilab.org MODBASE contains theoretically calculated models, not experimentally determined structures. The models may contain classificant error	Search by properties Property Database Accession Number Organism ALL or

Pieper et al (2011) Nucleic Acids Research

3D structure prediction MODbase

ar ga er	rch Summ rch Input: anism(s): form Act	ion on Selecto	sorc3_hum ed Model(s)	an 2 [•] Check model(s), then s	elect option	n 💌	Searc	h	Hor	mo sapi 1 r	ens natch found.	
	TARGET				MODEL D/					TEMPL	ATE	I
	Model Icon 😰	Model Model/Fold Sequence Database Annotation Icon Reliability Database Link		Organism	Protein Size	Modeled Segment	Size	Seq Id(%)	PDB code	PDB Segment	PDB Comment	
	毒		Q5VXF9	vps10 domain receptor protein sorcs 3 (sorcs3)	<u>Homo</u> <u>sapiens</u>	1222	198-643	446	16.00	<u>1sqjA</u>	8-581	crystal structure analysis of oligoxylogluca reducing-end-speci cellobiohydrolase (oxg-rcbh)
	8		<u>Q5VXF9</u>	vps10 domain receptor protein sorcs 3 (sorcs3)	<u>Homo</u> <u>sapiens</u>	1222	798-915	118	35.00	<u>1wqoA</u>	5-122	solution structure the pkd domain fro human vps10 domain-containin receptor sorcs2
	No.		Q5VXF9	vps10 domain receptor protein sorcs 3 (sorcs3)	<u>Homo</u> <u>sapiens</u>	1222	198-712	515	12.00	<u>1sqjA</u>	8-730	crystal structure analysis of oligoxylogluca reducing-end-speci cellobiohydrolase (oxg-rcbh)

3D structure prediction Protein Model Portal

Torsten Schwede

Home	Interactive Modeling	Quality Estimation	Protein Modeling 101	More -
Welcome	e to the			
Prot	ein Model Po	rtal (PMP)		

Haas et al. (2013) Database

Sean O'Donoghue

http://aquaria.ws/

O'Donoghue et al (2015) Nature Methods

Exercise 1/4

Starting aquaria

(May require a Java update)

Works best in Firefox (in Chrome with reduced functionality)

Open Firefox mit JRE (from ZDV)

Go to http://aquaria.ws

Run an example. If JAVA blocked unblock it at the plugin icon

Exercise 1/4

Starting aquaria

Note that aquaria.ws requires that **two** java plug-ins that need to be allowed to run

Seitenii	nformationen - http:/	//www.aquaria.ws/		×
<u>i</u>	tő 🔒			
Allgemein Medien Bere	chtigungen Sicherheit			
erechtigungen für: www.aquar	ria.ws			
Plugins verwenden				^
Adobe Acrobat	Standard verwenden	🔘 Jedes Mal nachfragen	O Erlauben	
Adobe Flash	 Standard verwenden 	O Jedes Mal nachfragen	O Erlauben	
Google Update	 Standard verwenden 	○ Jedes Mal nachfragen	O Erlauben	
Java	\bigcirc Standard verwenden	○ Jedes Mal nachfragen	Erlauben	
Java — Verwundbares Plugin!	\bigcirc Standard verwenden	○ Jedes Mal nachfragen	Erlauben	
Microsoft Office	 Standard verwenden 	○ Jedes Mal nachfragen	O Erlauben	
Microsoft Office	Standard verwenden	 Jedes Mai nachtragen 		

Exercise 2/4

Comparing different matches in Myosin X

You can load a protein by its UniProt ID

Try Myosin X: <u>http://aquaria.ws/Q9HD67/</u>

Zoom in and out using the mouse wheel (or with shift and drag up and down).

Rotate by click and drag

Click on a residue to select. Shift + Click selects a range. Esc clears the selection.

Double click on a residue centers the molecule on it.

Right click and drag moves the molecule laterally

Compare the different hits with domain annotations using the feature view

Exercise 3/4 Comparing different matches in the human MR

Type NR3C2 in protein name (human mineralocorticoid receptor) Note and compare the multiple hits.

Which proteins are those?

What do they match in the human mineralocorticoid receptor?

(Use the Features view)

The further down the less similar are the proteins compared. This is represented by a darker color.

Effect of mutations

PolyPhen-2 (**Poly**morphism **Phen**otyping v2) is a tool which predicts possible impact of an amino acid substitution on the structure and function of a human protein using straightforward physical and comparative considerations. Please, use the form below to submit your query.

15-Feb-2012: PolyPhen-2 server has been updated to utilize version 2.2.2 of the software, protein sequences from UniProtKB/UniRef100 Release 2011_12 (14-Dec-2011), structures from PDB/DSSP Snapshot 03-Jan-2012 (78,304 entries) and UCSC MultiZ multiple alignments of 45 vertebrate genomes with hg19/GRCh37 human genome (08-Oct-2009)

Query Data																						
Protein or SNP identifier																						
Protein sequence in FASTA format																						1.
Position																			[
Substitution	AA ₁ AA ₂	A	R	N	D	C	E	Q	G	H H	I I	L	ĸ	M	F	P	S	T T	W	Y Y	V	
Query description																						
											10	Sut	omi	t Q	Jery	(Clea	ar	Ch	eck	Stat	tus
										D	isp	ola	y a	ad۱	/an	ICe	d	qu	егу	o	otio	ns

http://genetics.bwh.harvard.edu/pph2/

Training

PSIC Score

Likelihood of an amino acid to occupy a specific position in the protein sequence given the pattern of amino acid substitutions observed in the multiple sequence alignment

High score Low score Reference EGKLQVQQGTGRFISR DGNL<mark>H</mark>VNO<mark>G</mark>MGRFIPR DGNL<mark>HVNKGMGRFTPR</mark> DGNI<mark>SVSKGM</mark>GRFIPR DGNISVSKGMGRFIPR EGTLHTTEGSGRFISR EGTLHATEGSGRYIPR Homologs DGNLHVTEGSGRYIPR DGTLHVTEGSGRYIPR DGTL<mark>HVTEG</mark>SGRYTPR DGTLHVTEGSGRYIPR DGNLHVSQGSGRFVPR DGNLFVTEGSGRFVPR DGKMFVTPGAGRFVPR DGNLLVTPGAGRFIPR DGNLLVTPGAGRFIPR DGTLSVMEGSGRFIPR DGNL<mark>HATSGTGRFIPC</mark>

Usage

Query Data								
Protein identifier								
Protein sequence in FASTA format	>IOH4496 MSYQGKKSIPHITSDRLLIKGGRIINDDQSLYADVYLEDGLIKQIGE NLIVPGGVKTIEA NGRMVIPGGIDVNTYLQKPSQGMTAADDFFQGTRAALVGGTTMIIDH VVPEPGSSLLTSF							
Position	115							
Substitution	AA ₁ A R N D C E Q G H I L K M F P S T W Y V AA ₂ A R N D C E Q G H I L K M F P S T W Y V							
Query description	test							
	Submit Query Clear Check Status							
Display advanced query options								

		P	PolyPhen-2 prediction of functional effects of human nsSNPs								
			Home	About	Help	Dow	nioads	Batch query	dbSNP query		
PolyPhen-2 report for Q14194 S115A											
Query											
Protein Acc	Position	AA ₁	AA ₂	Description							
<u>Q14194</u>	115	s	А	RecName: Full=Dihydropyrimidinase-related protein 1; Short=DRP-1; AltName: Full=Collapsin response mediator protein 1; Short=CRMP-1; AltName: Full=Unc-33-like phosphoprotein 3; Short=ULIP-3; LENGTH: 572 AA							
Results											
+ Prediction	/Confidenc	e							PolyPher	n-2 v2.0.23r349	
HumDi∨	HumDiv										
This mutation is predicted to be BENIGN with a score of 0.020 (sensitivity: 0.95 ; specificity: 0.75)											
⊣ Hum∨a	r										
Details											
+ Multiple sequence alignment						UniPro	UniProtKB/UniRef100 Release 2010_11 (02-Nov-2010)				
+ 3D Visualization PDB/DSSP Snapshot 09-Nov-2010 (69162 Struct									62 Structures)		

Multiple sequence alignment

UniProtKB/UniRef100 Release 2010_11 (02-Nov-2010)

		-
QUERY	S-Q <mark>GMIAADDFFQGIRAALV<mark>GGIIMIIDHVVPEP-GS</mark>SSILLIS<mark>PEKMHEAADI</mark><mark>KSCODISLHVDIII</mark>SMYDGVRE</mark>	
sp UPI0001D3675C#1	S-Q <mark>GMTAADDFFQGTRAALVGGTTMIIDHVVPEP-GSSSLLTSFEKMHEAADTKSCCDNSLHVDITSM</mark> YDGVRE	
sp Q566H1#1	Y-L <mark>GMSTEDDFYQGTKAAVAGGTTMIIDHVVPDP-GSNLLASFEKMHEVADTKSCCDYSLHVDITS</mark> MYDGIRE	
sp QOV9W2#1	Y-L <mark>GMSTLDDFYQGTKAANAGGTTMIIDHVVPDP-G</mark> SNLLSCFEKMHEVADT <mark>KSCCDMSLHVDITN</mark> MYDGIRE	
sp UPI000054533C#1	Y-L <mark>G</mark> TPPV <mark>DDFYQGTKAALAGGTTMIIDHVTPQP-G</mark> DGLLE <mark>AFE</mark> KMQEAADK <mark>KSCCDY</mark> SLHVDIPHMHEGVKE	
sp Q52PJ6#1	Y-L <mark>GTPPYDDFYQGTKAALAGGTTMIIDHVTPQP-GDGLLEAFEKMQEAADKKSCCDYSLHVDIPH</mark> MHEGVKE	
sp Q71SG1#1	E-Q <mark>GMTSADDFFQGTKAALAGGTTMIIDHVVPEP-GT</mark> SLLTAFDQWREWADS <mark>KSCCDM</mark> SLHVDITEMHKGVQE	
sp Q90635#1	E-QGMTSADDFFQGTKAALAGGTTMIIDHVVPEP-GTSILLTAFDQWREWADSKSCCDYSLHVDITEWHKGVQE	
sp 002675#1	D-Q <mark>GMTSADDFFQGTKAALAGGTTMIIDHVVPEP-GT</mark> SLLAAFDQWREWADS <mark>KSCCDM</mark> SLHVDITEMHKGVQE	
sp UPI00004BE3B1#1	D-QGMTSADDFFQGTKAALAGGTTMIIDHVVPEP-GTSLLAAFDQWREWADSKSCCDYSLHVDITEMHKGIQE	
sp UPI0001C638C0#1	D-Q <mark>GMTSADDFFQGTKAALAGGTTMIIDHVVPEP-GT</mark> SLLAAFDQWREWADS <mark>KSCCDM</mark> SLHVDITEMHKGIQE	
sp UPI00017F02FB#1	D-QGMTSADDFFQGTKAALAGGTTMIIDHVVPEP-GTSLLSAFDQWREWADSKSCCDYSLHVDITEWHKGIQE	
sp 008553#1	D-Q <mark>GMTSADDFFQGTKAALAGGTTMIIDHVVPEP-GT</mark> SLLAAFDQWREWADS <mark>KSCCDM</mark> SLHVDITEMHKGIQE	
sp Q53ET2#1	D-QGMTSADDFFQGTKAALAGGTTMIIDHVVPEP-GTSILJAAFDQWREWADSKSCCDMSLHVDISEMHKGIQE	
sp Q71SG2#1	E-Q <mark>GMTSADDFFQGTKAALAGGTTMIIDHVVPEP-GT</mark> SLLTAFDQWREWADS <mark>KSCCDMSLHVDITE</mark> MHKGVQE	
sp UPI00016E236A#1	Y-LGTRPVDDFCOGTKAAITGGTTMIIDHVTPOP-GESLLEAFECMOEAADKKACCDVSLHVDIPOMNEAVKD	
sp Q16555#1	D-Q <mark>GMTSADDFFQGTKAALAGGTTMIIDHVVPEF-GT</mark> SLLAAFDQWREWADS <mark>KSCCDY</mark> SLHVDISEMHKGIQE	
sp UPI0000E219E7#1	D-OGMASADDEFOCAWAALACCAMMIDHWVPEP-CTSILLAAEDOMREMADS <mark>XSCCDY</mark> SLHVDISEMHKGIOE	•

3D Visualization

PDB/DSSP Snapshot 09-Nov-2010 (69162 Structures)

EntryID: <u>1KCX</u> ChainID: B Residue: Ser115 Identity: 97.1% Overlap: 83.2% (476 aa)

Exercise 4/4 Study the effect of mutants with Polyphen2

•Let's see if you can design a damaging and a benign mutation for human myosin X (open in chimera PDB 3PZD to view and select candidate mutations; pick from chain A).

•Go to the Polyphen2 home page: <u>http://genetics.bwh.harvard.edu/pph2/</u>

•Type the UniProt id of the protein sequence "Q9HD67" in the Protein Identifier window. Type the position of your candidate for a damaging mutation. Select in AA1 the type of amino acid at that position. Now, select an amino acid to mutate to. May be try one with a large side chain, or if the wild type one was hydrophobic, try a hydrophilic one. Be nasty! Then hit Submit Query.

What result did you get? Is it close to one?

•Try your benign mutation in the same way. This time may be choose to mutate to a similar residue to the wild type one. Be gentle! Then hit Submit Query. What result did you get? Is it close to zero?