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ABSTRACT

The many functional partnerships and interactions
that occur between proteins are at the core of cel-
lular processing and their systematic characteriza-
tion helps to provide context in molecular systems
biology. However, known and predicted interactions
are scattered over multiple resources, and the avail-
able data exhibit notable differences in terms of qual-
ity and completeness. The STRING database (http:
//string-db.org) aims to provide a critical assessment
and integration of protein–protein interactions, in-
cluding direct (physical) as well as indirect (func-
tional) associations. The new version 10.0 of STRING
covers more than 2000 organisms, which has neces-
sitated novel, scalable algorithms for transferring in-
teraction information between organisms. For this
purpose, we have introduced hierarchical and self-
consistent orthology annotations for all interacting
proteins, grouping the proteins into families at var-
ious levels of phylogenetic resolution. Further im-
provements in version 10.0 include a completely re-
designed prediction pipeline for inferring protein–
protein associations from co-expression data, an API
interface for the R computing environment and im-
proved statistical analysis for enrichment tests in
user-provided networks.

INTRODUCTION

For a full description of a protein’s function, knowledge
about its specific interaction partners is an important pre-
requisite. The concept of protein ‘function’ is somewhat hi-
erarchical (1–4), and at all levels in this hierarchy, interac-
tions between proteins help to describe and narrow down
a protein’s function: its three-dimensional structure may
become meaningful only in the context of a larger pro-
tein assembly, its molecular actions may be regulated by
co-operative binding or allostery, and its cellular context
may be controlled by a multitude of transport, sequestering,
and signaling interactions. Given this importance of inter-
actions, many protein annotation and classification schemes
assign groups of interacting proteins into functional sets,
designated either as physical complexes, signaling pathways
or tightly linked ‘modules’ (1,5–7). However, the partition-
ing of interactions into distinct pathways or complexes can
be somewhat arbitrary, and may not do justice to the preva-
lence of crosstalk and dynamic variation in the interaction
landscape (8). A widely used concept that avoids partition-
ing of function arbitrarily is the protein network, i.e. the
topological summary of all known or predicted protein in-
teractions in an organism. For functional studies, arguably
the most useful networks are those that integrate all types
of interactions: stable physical associations, transient bind-
ing, substrate chaining, information relay and others. The
STRING database (Search Tool for the Retrieval of Inter-
acting Genes/Proteins) is dedicated to such functional asso-
ciations between proteins, on a global scale.

Protein–protein interaction information can already be
retrieved from a number of online resources. First, primary
interaction databases (e.g. 9–13) which are largely collabo-
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Figure 1. The STRING network view. Combined screenshots from the STRING website, which has been queried with a subset of proteins belonging to
two different protein complexes in yeast (the COP9 signalosome, as well as the proteasome). Colored lines between the proteins indicate the various types
of interaction evidence. Protein nodes which are enlarged indicate the availability of 3D protein structure information. Inset top right: for each protein,
accessory information is available which includes annotations, cross-links and domain structures. Inset bottom right: the same network is shown after the
addition of a user-configurable ‘payload’-dataset (26). In this case, the payload corresponds to color-coded protein abundance information, and reveals
systematic differences in the expression strength of both complexes.

rating (14,15) provide curated experimental data originating
from a variety of biochemical, biophysical and genetic tech-
niques. Second, since protein–protein interactions can also
be predicted computationally, a number of resources have
their main focus on interaction prediction, using a variety of
algorithms (e.g. 16–20). Lastly, a group of online resources
is providing an integration of both known and predicted
interactions, thus aiming for high comprehensiveness and
coverage. These include STRING, as well as GeneMANIA
(21), FunCoup (18), I2D (22), ConsensusPathDB (22) and
others. Within this landscape of online resources, STRING
places its focus on interaction confidence scoring, compre-
hensive coverage (in terms of number of proteins, organisms
and prediction methods), intuitive user interfaces and on a
commitment to maintain a long-term, stable resource (since
2000).

The basic interaction unit in STRING is the functional
association, i.e. a specific and productive functional rela-
tionship between two proteins, likely contributing to a com-
mon biological purpose. Interactions are derived from mul-
tiple sources: (i) known experimental interactions are im-

ported from primary databases, (ii) pathway knowledge is
parsed from manually curated databases, (iii) automated
text-mining is applied to uncover statistical and/or seman-
tic links between proteins, based on Medline abstracts and
a large collection of full-text articles, (iv) interactions are
predicted de novo by a number of algorithms using ge-
nomic information (23–25) as well as by co-expression
analysis and (v) interactions that are observed in one or-
ganism are systematically transferred to other organisms,
via pre-computed orthology relations. STRING centers
on protein-coding gene loci––alternative splice isoforms or
post-translationally modified forms are not resolved, but
are instead collapsed at the level of the gene locus. All
sources of interaction evidence are benchmarked and cal-
ibrated against previous knowledge, using the high-level
functional groupings provided by the manually curated Ky-
oto Encyclopedia of Genes and Genomes (KEGG) path-
way maps (5).

As of the current update to version 10.0, the number of
organisms covered by STRING has increased to 2031, al-
most doubling over the previous release. The update also
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Figure 2. Improved Co-expression analysis. STRING v10 features a completely re-designed pipeline for accessing and processing gene expression infor-
mation. Left: overview of the individual steps; note that redundant expression experiments are now detected and pruned automatically. Right: improved
benchmark performance of the resulting co-expression links, relative to the previous version of STRING, in four model organisms (ROC curves). The
benchmark is based on the KEGG pathway maps; predicted interactions are considered to be true positives when both interacting proteins are annotated
to the same KEGG map.

encompassed importing and processing all primary data
sources again, re-running all prediction algorithms and re-
executing the entire text-mining pipeline with new dictio-
naries and extended text collections. Many of the features
and interfaces of STRING have already been described pre-
viously (26–28). Below, we have given a short overview of
the resource and describe recent additions and modifica-
tions.

User interface

The main entry point into the STRING website is the
protein search box on its start page. It supports queries
for multiple proteins, can be restricted to certain organ-
isms or clades of organisms, and uses a weighted scheme
to rank annotation text matches and identifier matches.
Users can also arrive via a number of external websites (29–
32) that maintain cross-links with STRING, including the
partner resources Search Tool for Interactions of Chem-
icals (STITCH; 33) and eggNOG (34)––the latter both
share protein sequences, annotations and name-spaces with
STRING. A third way to enter STRING is via logging on to
the My Data section; this allows users to upload gene-lists,
create identifier mappings, view their browsing history and
provide additional ‘payload’ data to be displayed alongside
the interactions.

Once a protein or set of proteins is identified, users pro-
ceed to the network view (Figure 1). From there, it is pos-
sible to inspect the interaction evidence, to re-adjust the
score-cutoffs and network size limits and to view detailed
information about the interacting proteins. Upon switch-
ing to the ‘advanced’ mode (via the tool panel below the
network), users can also cluster and rearrange the network
and test for statistical enrichments in the network. The lat-
ter feature has been enhanced for the current version 10.0
of STRING: enrichment detection now also covers human
disease associations and tissue annotations, which might
be statistically enriched in a given network. For this fea-
ture, STRING connects with the partner databases TIS-
SUES (http://tissues.jensenlab.org) and DISEASES (http:
//diseases.jensenlab.org), which also share sequence and
name spaces with STRING, and which annotate proteins
to tissues or to disease entities based on a combination of
automated text-mining and knowledge imports.

Interaction transfer between organisms

Since version 6.0 of STRING, a significant source of inter-
actions for any given organism has been the transfer of in-
teraction knowledge from orthologous proteins observed to
be interacting in another organism. Since version 9.1, these
so-called ‘interolog’ transfers were based on pre-computed
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Figure 3. Access to STRING from R/Bioconductor. Left: example session describing how to initialize a human protein network from the STRING
database backend, and how to map a set of gene names against it. A subset of the proteins is then plotted as a STRING network (right), complete with
auxiliary numerical payload-information highlighting some nodes of interest (red color halos).

orthology relations imported from the eggNOG database
(34). Orthologs in eggNOG are provided in a hierarchical
and nested fashion, allowing the transfer of interactions by
traversing up and down along the hierarchy of clades in the
tree of life (26). For this purpose, the nested orthology as-
signments should ideally be fully self-consistent: proteins
assigned to an orthologous group for a given phylogenetic
clade should be grouped together in all higher-level clades
too. In past versions of the orthologous groups, this has
not always been the case for technical reasons (orthology
assignments are computed independently for each clade).
However, for STRING v10, a post-processing pipeline has
been devised that makes the orthology setup fully self-
consistent. It implements consistency by iteratively splitting
and merging orthologous groups at the various clades and
levels, until a fully consistent state is achieved. As of now,
this post-processed set of orthologs forms the basis for all
interaction-transfers in STRING v10. In future releases, the
same hierarchical and consistent set of protein families and
orthologs will be used also for more intuitive navigation and
search features on the user interface.

Co-expression analysis

It has long been established that co-expression is a proxy
for co-regulation (35,36) and a strong indicator of func-
tional associations. The co-expression scores in STRING
v10 are computed using a revised and improved pipeline
(Figure 2), making use of all microarray gene expression
experiments deposited in NCBI Gene Expression Omnibus
(NCBI GEO) (37). As of March 2014, GEO consisted of

more than 12 000 different platforms (GPL), 45 000 experi-
ments (GSE) and over 1 million matrices (GSM). By includ-
ing the large amount of diverse arrays in the analysis we can
decrease the bias of individual platforms and experiments,
and reduce the impact of non-informative matrices. Prior to
the analysis, 22 organisms were identified as providing suf-
ficient data (at least 50 experiments each). The first step of
the pipeline maps probe identifiers from each platform file
(GPL) to STRING genes, using dictionaries from the text-
mining pipeline. Samples with less than 100 map-able genes
and experiments with less than three samples are excluded
from further analysis. The microarray expression values (ex-
tracted from the GSE files) are then normalized (z-value
normalization) and values for each probe merged into sin-
gle vectors (separately for single-channel and dual-channel
arrays). Additionally, single-channel array values are log2-
transformed and their mean is subtracted, to make them
compatible with fold-change values in the two-channel case.
Expression values of genes measured by more than one
probe are averaged. In order to remove the redundancy
and to increase information density between the arrays, the
gene expression vectors are correlated with one another (us-
ing Spearman’s rank correlation) and the full set of arrays
is pruned using the Hobohm-2 algorithm (38) with sim-
ilarity thresholds of 0.7 and 0.95, for single-channel and
dual-channel arrays, respectively. The new gene expression
values are then correlated gene-by-gene (Pearson correla-
tion) and the resulting values are calibrated against com-
mon membership in KEGG pathway maps (release 2014-
07-21) in order to compute STRING scores. Lastly, the
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scores from single- and dual-channel arrays are combined in
a probabilistic manner to get the final scores. KEGG bench-
mark performance clearly improves relative to STRING
v9.1 (Figure 2). The improvements can be attributed to the
increased size of the GEO repository (experiments added
since 2011) and to changes in our pipeline, namely: (i) the
additional step to prune highly correlated samples using the
Hobohm-2 algorithm and (ii) several minor improvements
and bug fixes.

R/Bioconductor access

Apart from directly browsing and searching the website,
data access in STRING is possible also via a REST-based
API (application programing interface) and via wholesale
data download. With version 10.0, we have introduced
a further option: direct access from the R programming
environment, following the Bioconductor standard (39).
The corresponding package is named STRINGdb (Fig-
ure 3), and can be downloaded from the Bioconductor
repository (http://www.bioconductor.org/packages/release/
bioc/html/STRINGdb.html). The package interacts with
the STRING server via the REST API and via additional,
dedicated web services. To optimize the speed of subsequent
accesses, the entire interaction network and associated data
for a given organism are downloaded from the server and
cached locally in the R environment, whenever possible. The
package is built around the iGraph framework (40), which
handles the complexity of the network data structures and
provides fast query/analysis functions. Once a network is
loaded/cached into an iGraph object, high-level functions
facilitate the most common user tasks, such as mapping pro-
tein names onto their corresponding STRING identifiers,
retrieving the neighbors of a protein of interest, retrieving
PubMed IDs for publications that support a given interac-
tion, finding clusters of proteins in the network and gener-
ating stable links back to the STRING website.

The plot network function can be used to display a native
STRING network of proteins in R (Figure 3). Functions
are also available to augment a given network with user-
provided node colorings (‘payload information’, see also
Figure 1), such that subsets of proteins can be tagged and
visually highlighted. Statistical enrichment tests can be ex-
ecuted on gene lists within the STRING namespace, cov-
ering Gene Ontology and pathway annotations, as well as
tissue and diseases annotations. Results can be visualized
as lists of enriched terms and/or heatmaps. The R-package
proves particularly valuable for users arriving with a very
large set of genes, for which the web-based interface of
STRING has previously been a major bottleneck.
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