
PIPER: An FFT-Based Protein Docking Program
with Pairwise Potentials

Dima Kozakov,1 Ryan Brenke,2 Stephen R. Comeau,2 and Sandor Vajda1,2*
1Department of Biomedical Engineering, Boston University, Boston, Massachusetts
2Program in Bioinformatics, Boston University, Boston, Massachusetts

ABSTRACT The Fast Fourier Transform (FFT)
correlation approach to protein–protein docking
can evaluate the energies of billions of docked con-
formations on a grid if the energy is described in
the form of a correlation function. Here, this re-
striction is removed, and the approach is efficiently
used with pairwise interaction potentials that sub-
stantially improve the docking results. The basic idea
is approximating the interaction matrix by its eigen-
vectors corresponding to the few dominant eigenval-
ues, resulting in an energy expression written as the
sum of a few correlation functions, and solving the
problem by repeated FFT calculations. In addition to
describing how the method is implemented, we
present a novel class of structure-based pairwise
intermolecular potentials. The DARS (Decoys As
the Reference State) potentials are extracted from
structures of protein–protein complexes and use
large sets of docked conformations as decoys to
derive atom pair distributions in the reference
state. The current version of the DARS potential
works well for enzyme–inhibitor complexes. With
the new FFT-based program, DARS provides much
better docking results than the earlier approaches,
in many cases generating 50% more near-native
docked conformations. Although the potential is far
from optimal for antibody–antigen pairs, the results
are still slightly better than those given by an earlier
FFT method. The docking program PIPER is freely
available for noncommercial applications. Proteins
2006;65:392–406. VVC 2006Wiley-Liss, Inc.
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INTRODUCTION

The goal of protein–protein docking is to determine the
structure of a complex in atomic detail, starting from the
coordinates of the unbound component molecules.1–3 Most
of the current docking methods start with rigid body dock-
ing that generates a large number of docked conforma-
tions with good surface complementarity.4 The Fast Fou-
rier Transform (FFT) correlation approach, introduced in
1992 by Katchalski-Katzir and coworkers,5 revolutionized
this step of rigid body search. Owing to the numerical effi-

ciency of this algorithm it became computationally feasi-
ble, for the first time, to systematically explore the confor-
mational space of protein–protein complexes evaluating
the energies for billions of conformations on a grid, and
thus to dock proteins without any a priori information on
the expected structure.6,7 Other approaches, primarily
Monte Carlo, also perform well if the search can be re-
stricted to regions of the conformational space,8,9 but be-
come computationally expensive if no such constraints
are available. For this reason, FFT-based docking is the
first step in many methods that have performed well at
CAPRI (Critical Assessment of Predicted Interactions),
the first community-wide experiment devoted to protein
docking.6,7 We note that this approach is obviously re-
stricted to proteins with moderate conformational changes
upon binding.4

Although the FFT-based method represents major pro-
gress in protein docking, it also has serious limitations,
even beyond the consequences of the rigid body assump-
tion. The most important constraint is on the target func-
tion, which is restricted to have the form of a correlation
function, resulting in rather inaccurate estimation of the
binding free energy. The original scoring function, intro-
duced by Katchalski-Katzir et al.,5 was based only on shape
complementarity, but was later extended to include addi-
tional terms representing electrostatic interactions,10,11 or
both electrostatic and solvation contributions.12 Although
the new potentials improved performance, energy evalua-
tion remains relatively crude. Due to this uncertainty, to
avoid the loss of near-native solutions when docking un-
bound structures of proteins, one has to retain a large
number (usually 2000 to 20,000) of docked conformations
for further analysis. Because the number of near-native
structures among the ones retained is generally small—
from a few to at most a hundred—the rigid body search
ends with many false positives,4 that is, conformations
that are geometrically distant from the native but score as
well as the ones close to it. Accordingly, in the best-per-
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forming docking methods the initial search is followed by
a refinement and discrimination step that ranks the
docked conformations and selects the ones close to the
native, usually using a more accurate energy function that
accounts for the affinity of binding between the two pro-
teins.10,13,14 The discrimination between near-native and
other structures can be further improved by clustering
methods.15,16 These procedures improve the discrimina-
tion such that conformations with less than 10 Å RMSD
are generally found within the top 10–100 structures.
However, needless to say, the discrimination step is diffi-
cult if the rigid body search generates only a few near-
native structures, and it is obviously futile if no such
structures are in the set. Thus, improving FFT methods
remains the key to the success of the entire procedure that
starts with rigid body docking.
In this article we explore the use of pairwise structure-

based potentials with FFT correlation docking. Such poten-
tials (also called knowledge-based or statistical potentials)
have emerged as powerful tools for finding near-native
conformations in sets of structures generated by search
algorithms in macromolecular modeling, and have sub-
stantially contributed to improving the accuracy in protein
structure prediction.17–23 Pairwise knowledge-based poten-
tials have also been used with success in the discrimina-
tion stage of protein–protein docking.13–15,24–27 Hence,
their use directly in the docking stage is expected to in-
crease the number of near-native structures found. In prin-
ciple, FFT-based methods can use pairwise potentials as
their scoring function. A potential defined for K atom types
and given by a K 3 K interaction matrix can be written as
the sum of K correlation functions. The function can be
then evaluated by performing K forward and K inverse
Fourier transformations. The major difficulty is that K is
generally around 20, and hence, the approach is computa-
tionally expensive, even with the increasing computer
power currently available. Here, we show that this prob-
lem can be avoided by an eigenvalue–eigenvector decom-
position of the coefficient matrix that substantially re-
duces the complexity of the calculations. In fact, adequate
accuracy can be achieved by restricting consideration to
the eigenvectors corresponding to the P largest eigenval-
ues where 2 � P � 4, and thus performing only 2 to 4 for-
ward and one inverse FFT calculations. According to the
results presented in this article, this approach substan-
tially increases the number of near-native solutions (hits)
at relatively moderate additional computational costs.
Although our focus is on the extension of the FFT dock-

ing, we also describe preliminary work on developing a
new class of structure-based potentials. Although a large
variety of intramolecular potentials are available for pro-
tein folding and fold recognition, relatively little attention
was given to intermolecular potentials, partly because the
number of known protein–protein complexes only recently
started to grow. Sternberg and coworkers developed both
residue-level and atom-level intermolecular pair poten-
tials; a residue-level potential based on Ca atoms, a
residue-level potential based on all atoms (RPScore), a
residue-level potential based on all side-chain atoms, and

an atom-level potential with K ¼ 40 grouped atom types.24

The potentials were derived from a small training set that
included a few heterodimers, a few homodimers, and a
nonredundant set of protein domains. Moont et al.24 tested
the potentials using decoy sets of docked conformations
only for nine complexes. The best discrimination was
obtained by the residue-level potentials. However, we have
observed25 that RPScore was much more likely to fail for a
complex that was not represented (directly or by homol-
ogy) in its training set, suggesting that the dataset was
too small and biased toward certain types of complexes.
Skolnick and coworkers26 also developed both a residue-
level (K ¼ 20) contact potential and an atom-level poten-
tials with all K ¼ 167 heavy atoms as atom types. The
potentials have been derived from 768 protein complexes
(617 homodimers and 151 heterodimers), and were tested
using decoy sets of docked conformations for 15 complexes.
In contrast to the results by Moont et al.,24 the discrimina-
tion turned out to be much better using the atom-level
potential than using the residue-level version, suggesting
that the training set used by Moont et al. was simply too
small. This is in good agreement with our preliminary
results, and hence, we restrict consideration to atom-level
potentials.

Two atom-level potentials will be used in this work,
both written in the form Epair ¼ Sijeij, where eij denotes the
energy contribution by a pair of interacting atoms ai and
aj, and the sum is taken over all pairs of atoms that are
closer to each other than a cutoff distance D. The first
potential EACP, termed ACP (Atomic Contact Poten-
tial),28,29 is an atom-level extension of the well-known res-
idue-level potential by Miyazawa and Jernigan.20,21 ACP
is a solvent-mediated potential (see the Methods section
and ref. 30 for the discussion of this concept), and the
atomic contact energy, eij, is defined as the effective free
energy of a reaction in which two fully solvated atoms des-
olvate and associate to form the interacting atom pair
aiaj.

20,21 The ACP potential has been derived for K ¼ 18
atom types from 89 nonhomologous proteins.28 Due to the
solvent-mediated character and the small number of
charged residues in the interior of proteins, the atomic
contact potentials may be attractive even between atoms
with like charges. More generally, because ACP includes
both desolvation and atom–atom binding, the atomic con-
tact energies between polar or charged atoms are weak.
For this reason, we have used the potential in conjunction
with a coulombic electrostatic term. For docking applica-
tions we also added a van der Waals term, representing
shape complementarity of the component proteins.

The second atom-level contact potential has been spe-
cifically developed for application with the FFT docking.
As will be described in the Methods section, to derive the
potential we considered the nonredundant data set of 621
protein–protein interfaces, compiled by Glaser et al.,31

but removed all complexes that also belong to the bench-
mark sets32,33 used for testing our method. Unlike the
solvent-mediated ACP, this potential is residue-mediated
(see the Methods section and ref. 30). Although in a sol-
vent-mediated potential the reference state is defined by
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noninteracting and fully solvated atoms, in a residue-
mediated potential the reference state is obtained by
averaging interactions over compact structures, most fre-
quently by using the mole fractions of specific atom
types.18,19,30 The novelty of our approach is that we gener-
ate a large decoy set of docked conformations to be used as
a reference state. Developing the potential, we compare
the frequency of contacts between two specific atom types
in the native state to the frequency of contacts in the
decoys. Because the goal is finding complex conformations
close to the native among the many structures that all
have good shape complementarity, this scoring scheme is
natural, as it rewards the occurrence in the interface of
the atom pairs that are frequently seen to interact in
native complexes.
In the Methods section we describe implementing FFT-

based docking with pairwise potentials, and briefly the
development of the novel DARS (Decoys as the Reference
State) potential. As with ACP, we add electrostatic and
van der Waals terms to the DARS potential when used
for docking. The properties of the newly developed DARS
potential significantly differ from those of the Atomic
Contact Potential (ACP),28 and the best results are ob-
tained when using a linear combination of ACP and DARS
as the scoring function. For enzyme–inhibitor complexes
the results are much better than those obtained by a tradi-
tional FFT method. In particular, the number of near-
native docked structures increased by at least 50% for
more than half of the enzyme–inhibitor complexes in the
well-known protein docking benchmark sets.32,33 For the
antigen–antibody test set the results are weaker, but still
better than those by an earlier method. The difference is
not completely surprising, as analyses of protein com-
plexes34–37 clearly show that the interfaces in enzyme–
inhibitor and antigen–antibody complexes substantially
differ. Our results further emphasize that to substantially
improve the docking of antibodies to antigens one needs a
special potential accounting for the properties of the inter-
face in this type of complexes.

METHODS
FFT Docking with Multiple Correlations

Fast Fourier Transform (FFT) docking algorithms per-
form exhaustive evaluation of simplified energy functions
in discretized 6D space of mutual orientations of the pro-
tein partners. The larger docking partner is considered
the receptor, and its center of mass is fixed at the origin of
the coordinate system. The other partner is considered the
ligand and all its possible orientational and translational
positions are evaluated at the given level of discretization.
The rotational space is sampled using a deterministic lay-
ered Sukharev grid sequence for the rotational group
SO(3), which quasi-uniformly covers the space with a
given number of samples.38 The translational space is rep-
resented as a grid of displacements of the ligand center of
mass with respect to the receptor’s center of mass.
Here we assume that the energy-like scoring function

describing the receptor–ligand interactions is defined on

a grid, and is expressed as the sum of P correlation func-
tions for all possible translations a, b, g of the ligand rel-
ative to the receptor

Eða;b; gÞ ¼
X
p

X
i;j;k

Rpði; j; kÞLpðiþ a; jþ b; kþ gÞ

where Rp(i, j, k) and Lp(i, j, k) are the components of the
correlation function defined on the receptor and the
ligand, respectively. This expression can be efficiently cal-
culated using P forward and one inverse Fast Fourier
transforms, denoted by FT and IFT, respectively:

Eða;b;gÞ ¼ IFT
Xp
p

FT�fRpgFTfLpg
( )

ða;b;gÞ

FTfFgðl;m;nÞ ¼
X
i;j;k

Fði; j; kÞ exp�2piðli=N1þmj=N2þnk=N3Þ

IFTffgði; j;kÞ ¼ 1

N1N2N3

X
l;m;n

f ðl;m;nÞ exp2piðli=N1þmj=N2þnk=N3Þ

where i ¼ ffiffiffiffiffiffiffi�1
p

, N1, N2, and N3 are the dimensions of the
grid along the three coordinates. If N1 ¼ N2 ¼ N3 ¼ N,
the efficiency of this approach is O(N3 log(N3)) as com-
pared to O(N6) when all evaluations are performed
directly. For each rotational orientation, which is taken
consecutively from the set of rotations, the ligand is
rotated and the Lp function is calculated on the grid. We
then calculate the correlation function of Lp with the pre-
calculated Rp function using FFT. The resulting sum pro-
vides scoring function values for all possible translations
of the ligand. The results are clustered with a 10-Å cube
size and one or several lowest energy translations for the
given rotation are reported. Finally, results from different
rotations are collected and sorted.

Scoring Function

The energy function is given as the sum of terms repre-
senting shape complementarity, electrostatic, and desolva-
tion contributions, the latter described by a pairwise
potential as follows.

E ¼ Eshape þw2Eelec þw3Epair

Eshape ¼ Eattr þw1Erep

Eelec ¼
XNR

i¼1

XNL

j¼1

qiqj

r2ij þD2 exp
�r2

ij

4D2

� �� �1
2

Epair ¼
XNR

i¼1

XNL

j¼1

eij

where NR and NL denote the numbers of atoms in the re-
ceptor and the ligand, respectively. According to these
expressions, the shape complementarity term Eshape

accounts for both attractive and repulsive interactions, the
latter eliminating atomic overlaps. The specific form of
Eshape will be defined on a grid in the next section. The
electrostatic term, Eelec is given by a simplified generalized
Born-type expression. The coefficients w1, w2, and w3
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weight the different contributions to the scoring function.
The value of w1 is selected to avoid substantial steric
clashes, but to allow for some atomic overlaps that occur
due the differences between bound and unbound (i.e., sepa-
rately crystallized) structures of the component proteins.
We note that all rigid body docking methods assume that
such differences exist but are moderate. Although this
assumption is frequently acceptable, it excludes the appli-
cation of the method to certain types of complexes. For
example, the benchmark sets32,33 include a number of ‘‘dif-
ficult’’ cases with substantial backbone conformational
changes upon association. Most docking methods, includ-
ing ours, provide few if any near-native conformations for
these complexes. Although we include some ‘‘difficult’’
cases in our test set, backbone flexibility is beyond the
scope of this article, and the problem will not be further
discussed here. The coefficients w2 and w3 will be selected
to provide maximum performance for specific classes of
proteins.

Shape Complementarity Energy Terms Defined
on a Grid

For efficient evaluation we are using a rectangularly
smoothed shape complementarity term as suggested by
Vakser.39 The repulsive interactions are cut off at the
van der Waals radius rvdw plus 2 Å because we want the
penalty function to be tolerant enough and to allow for
differences between bound and unbound structures. To
further account for the potential flexibility of the compo-
nent proteins we have reduced the van der Waals radii
of atoms on the protein surface, and increased the radii
in the core. The attractive part has the same cutoff ra-
dius (6 Å) for all atom types. On the grid, the functions
describing the receptor and the ligand can be repre-
sented as follows

Rpðl;m;nÞ ¼ �cl;m;n þw1rl;m;n

Lpðl;m;nÞ ¼ 1 if ðl;m;nÞ 3 ðaj 2 JÞ
0 otherwise

�

where (l, m, n) ] (aj [ J) means that the grid point (l, m,
n) overlaps with atom aj of atom type J,cl,m,n is the num-
ber of atoms that are at the distance d < r < D from the
grid point (l, m, n), and rl,m,n is number of atoms that are
at the distance r < d from the same grid point. We have
used the values D ¼ 6 Å and d ¼ rvdw þ 2 Å. The correla-
tion of these two functions provides a shape complemen-
tarity term representing both repulsive and attractive
interactions, the former for the distances r < d, and the
latter in the range d < r < D.

Electrostatic Interactions on a Grid

To account for the electrostatic interactions between
the two proteins surrounded by solvent we use a simpli-
fied Generalized Born (GB) type equation with constant
Born radii. This approximation neglects the dependence
of the Born radii on the atomic environment, but allows

for writing the electrostatic interactions as a correlation
between the electrostatic potential field of the receptor
and the charges on the ligand:

Rpðl;m;nÞ ¼
XNr

i¼1

qi

r̂2i;ðl;m;nÞ þD2 exp
�r̂2

i;ðl;m;nÞ
4D2

� �� �1
2

Lpðl;m;nÞ ¼
(
qj if ðl;m;nÞ 3 ðaj 2 JÞ
0 otherwise

r̂i;ðl;m;nÞ ¼ maxðri;ðl;m;nÞ; 2DÞ
where ri,(l,m,n) is the distance between atom ai and the
grid point (l,m,n). The potential is truncated at the dis-
tance 2D for the same reason as the shape complemen-
tarity term. In addition, the electrostatic interactions
are made less sensitive to conformational perturbations
by smoothing it through a convolution with square
boxes of size 3 Å. This type of smoothing is very impor-
tant. As shown in Figure 1A, the function Rp(l,m,n)
yields a very rugged electrostatic potential field where
the positions of the local minima and maxima heavily
depend on the atomic coordinates. The convolution with
the box yields a much smoother potential (Fig. 1B),
which is less sensitive to coordinate perturbations. The
same applies to the electrostatic part of the receptor–
ligand interaction energy. Figures 1C shows a slice of
this energy, calculated with the original electrostatic
potential, as a function of two translational coordinates.
Figure 1D shows the same slice of the energy, but this
time calculated using the smoothed potential.

Corellation Decomposition of Pairwise Potentials

In general form of a pairwise contact potential is

Epair ¼
XNR

i¼1

XNL

j¼1

eij

In this equation NR and NL denote the numbers of atoms
in the receptor and the ligand, respectively; eij ¼ eIJ if the
interacting atoms ai and aj are of types I and J, respec-
tively, and d < rij < D; whereas eij ¼ 0 if rij > D. Here eIJ
is the contact energy between interacting atoms of types
I and J. The above expression for Epair does not have the
form of a correlation function, but it can be written as a
sum of correlation functions. This latter representation is
based on the eigenvalue–eigenvector decomposition of the
pairwise interaction matrix of the elements eIJ. The ma-
trix is symmetric and hence has K real eigenvalues,
where K is the number of different atom types. The ma-
trix elements can be written as

eIJ ¼
XK
p¼1

kpupIupJ

where kp is pth eigenvalue of the interaction matrix, and
upl is the Ith component of the pth eigenvector. Thus, any
pairwise potential can be calculated using K real or K/2
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complex FFTs. Because the existing pairwise interaction
potentials can have up to 167 atom types, the calculation
can be computationally very expensive. However, we can
approximate the total pairwise energy with arbitrary ac-
curacy using a much simpler expression. Each term in
the eigenvalue–eigenvector decomposition represents an
energy contribution proportional to the absolute value of
the eigenvalue kp, and such contributions are independent
due to the orthogonality of the eigenvectors. We order the
eigenvalues by their absolute values, starting with the
largest, and restrict consideration to the first P terms, that
is, neglect the contribution of the remaining terms. Note
that restricting consideration to a grid may yield up to 10%
error in the energy values, and hence, it is well justified to
truncate the summation when the energy contributions of
the neglected terms are comparable to this error. We have
performed analysis on several existing pairwise potentials
such as ACP28 and RPScore,24 and found that, depending
on the number of atom types, only two to four eigenvalues
are needed to achieve this accuracy (see Results). The
energy term with the pth eigenvalue of the pairwise poten-
tial on the grid is represented by the function

Rpðl;m;nÞ ¼
XNr

i¼1

upIdi

Lpðl;m;nÞ ¼ upJ if ðl;m;nÞ 3 ðaj 2 JÞ
0 otherwise

�

where di is 1 if the grid point (l, m, n) is at a distance less
then D from atom i of the receptor.

Parameters for Enzyme–Inhibitor and
Antigen–Antibody Complexes

Most parameters of the FFT algorithm are independent
of the type of the proteins to be docked. We sampled
70,000 rotations, which aproximately corresponds to
sampling at every 5 degrees in the space of Euler angles.
Increasing the number of rotations generally improved
the results. Thus, the number of points was chosen as a
compromise between performance and computational ef-
ficiency. We used grids with 1.2-Å cell size, which was
found to be adequate for representing protein structures
with sufficient details and at the same time providing ac-
ceptable computational efficiency. The number of grid
cells along each direction was selected on the basis of
the size of the receptor and the ligand by the following
algorithm:

aðvÞ ¼ absðvi � vjÞ
Sx ¼ maxijðaðxrÞÞ þmaxijðaðxlÞ;aðylÞ; aðzlÞÞ
Sy ¼ maxijðaðyrÞÞ þmaxijðaðxlÞ;aðylÞ; aðzlÞÞ
Sz ¼ maxijðaðzrÞÞ þmaxijðaðxlÞ;aðylÞ;aðzlÞÞ
Nx ¼ rððSx=1:2Þ þ 2Þ
Ny ¼ rððSy=1:2Þ þ 2Þ
Nz ¼ rððSz=1:2Þ þ 2Þ

where Nx, Ny, and Nz denote the number of cells along
the x, y, and z directions, respectively, and r(N) is a func-
tion which moves N to the nearest product of small prime
numbers. The algorithm selects the smallest grid that
can accommodate the two proteins, and is efficient for

Fig. 1. A: Slice of the scalar electrostatic potential field of Ribonuclease A, the receptor in the complex
1DFJ. B: The same slice as in (A), but the potential is smoothed by convolution as described in Methods. C:
Slice of the field of the electrostatic receptor–ligand interaction in the complex of ribonuclease A with ribonu-
clease inhibitor (1DFJ) as function of the translations of the inhibitor along two coordinates. The ligand orien-
tation is as in the native complex. The large spike indicates the native position of the ligand. D: The same as
in (C), but the electrostatic interaction energy is calculated using the smoothed potential.
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the Fast Fourier Transform. It is interesting to note that
the grid size we have used was actually too small to
fit the whole ligand if the ligand center of mass was
shifted to the far ends of the grid. Because the grid is
assumed periodical in the FFT calculations, such ligands
are effectively wrapped around the receptor. However,
this effect occurs only at substantial separations of the
two proteins where the interactions are weak, and hence,
do not effect the calculated energy values.
As will be discussed, the ACP potential works well

for complexes with a largely hydrophobic interface, but
the DARS potential provides better discrimination if the
interface is more polar. Because the properties of the
interface are not a priori known, we use the linear combi-
nation of the two potentials defined by

EDARSþACP ¼ ð3 � EDARS þ 0:5 � EACPÞ=4:0

as the pairwise potential Epair in the FFT-based docking
calculation.
The parameters that differ between different types of

complexes are the weights w1, w2, and w3 of the energy
terms in the energy expression. These parameters were
optimized and adjusted using a small subset of benchmark
proteins32 taken from the Protein Data Bank (PDB). For
enzyme–inhibitor pairs we have used the complexes
1ACB, 1BRC, 1DFJ, 2KAI, and 4HTC, whereas the com-
plexes 1WEJ, 1AHW, 1E08, and 1NCA were used to find
appropriate weights for docking antibody and antigen
pairs. For each complex, 20,000 docked conformation were
generated using the FFT algorithm with some initial val-
ues of the weights. The resulting structures were divided
into two subsets, one with conformations within 10 Å
RMSD from the native structure, and the other beyond
this RMSD cutoff. We then used logistic regression as pro-
vided in the package R (see http://www.r-project.org/), and
optimized the weighting coefficients. This was done sev-
eral times iteratively to achieve convergence. Based on
these calculations we used the values w1 ¼ 2.1, w2 ¼
133.0, and w3 ¼ 2.2 for enzyme–inhibitor complexes, and
w1 ¼ 2.0, w2 ¼ 400.0, and w3 ¼ 1.0 for antigen–antibody
pairs. Thus, the coefficient w1 of the repulsive contribution
in the shape complementarity term turned out to be essen-
tially independent of the type of the complex. We have
found, however, that the optimal weight w2 of the electro-
static component is three times larger in antigen–antibody
than in enzyme–inhibitor complexes, in agreement with
the fact that the latter complexes generally have a less po-
lar interface.
As will be described in the Results, test calculations

were performed on 33 enzyme–inhibitor complexes found
in the protein docking benchmark sets 1.0 and 2.0,32,33

and for 16 antigen–antibody pairs found in the benchmark
set 1.0. For each complex we docked the unbound–
unbound or the unbound–bound structures of the compo-
nent proteins as available in the benchmark sets.32,33 In
both the receptor and the ligand, we masked the attractive
shape complementarity terms for the terminal residues.
The reason is that the position of these residues is fre-

quently uncertain, which may lead to false positive inter-
actions. For antibodies we also masked the attractive
shape term for all residues that did not belong to the Com-
plementarity Determinig Regions (CDRs), see Chen et al.40

Development of Potentials with Decoys
as the Reference State (DARS)

Within the framework of the inverse Boltzmann ap-
proach, a statistical potential between two atoms ai and
aj that are of types I and J, respectively, and are located
within a certain cutoff distance D, is defined by the
expression of the form

eIJ ¼ �RT lnðpIJÞ
where R is the gas constant, T is the temperature, and
pIJ denotes the probability of two atoms of types I and
J interacting. This probability is approximated by the
frequency

pIJ ¼ mobsIJ

mrefIJ

where mobsIJ is the observed number of interacting atom
pairs if types I and J, and mrefIJ is the expected number of
interacting atom pairs of types I and J assuming an
appropriate reference state. If the state of the protein or
complex is fully determined by the interactions among its
interactions sites, the (structure-based, knowledge-based,
or statistical) potential of the system is calculated by the
sum Epair ¼ SiSjeij, where eij ¼ eIJ if the interacting atoms
ai and aj are of types I and J, respectively, and d < rij <
D; whereas eij ¼ 0 if rij > D.

The basic idea of knowledge-based potential is that mobsIJ

can be directly determined by counting the number of
intermolecular interactions between atoms of types I and
J in a database of protein complexes. The advantages of
structure-based potentials are clear. The potentials
include the essential features of intermolecular interac-
tions as well as solvent effects. Because the potentials are
fast to compute, they allow better sampling of the confor-
mational space in the calculations. Because the numbers
of known protein complex structures have increased
greatly in recent years, and certainly will grow even
faster in the near future, these potentials are expected to
become more and more accurate if the additional struc-
tural information is properly utilized. The selection of the
reference state remains a critical feature. The general
assumption in the reference state is that the specific
interactions determining the distribution of interaction
sites are removed as much as possible. Because experi-
ments do not provide us with such ‘‘random’’ protein com-
plexes, additional assumptions have to be made, and this
is the point where the various structure-based potentials
start to differ.19 On the basis of the reference state,
structure-based potentials can be divided into two large
groups.19,30,41

In solvent-mediated potentials the reference state is de-
fined in terms of solvated but otherwise noninteracting
residues.30 The advantage of this approach is that the ref-
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erence state has some physical meaning, that is, for an
intermolecular potential the reference state is defined by
solvated component proteins at infinite separation. By def-
inition, solvent-mediated potentials are required for esti-
mating the binding free energy, and thus evaluating the
strength of the association. Due to the finite size of pro-
teins, interresidue distances in complexes are relatively
short even for residue pairs that might repel each other.
Because these effects are not compensated by the re-
ference state, solvent-mediated potentials may be attrac-
tive even for two interacting residues with charges of the
same sign.20 By definition, the Atomic Contact Potential
(ACP), one of the target functions we use in our FFT calcu-
lations, is a solvent-mediated potential.28 Because of this,
and because it has been derived from protein structures in
which salt bridges are rare, ACP essentially fails to repre-
sent the electrostatic interactions. Nevertheless, it per-
forms well for complexes in which the interface is largely
hydrophobic, which is the case in the majority of enzyme–
inhibitor complexes.
In residue-mediated potentials the reference state is

obtained by averaging the interactions over compact
structures.30,42 Because we observe the unfavorable pair
interactions less frequently than in the reference state,
the corresponding contributions to the potential are
repulsive as they should be. Such potentials are more
suitable for finding near-native conformations in a set of
compact structures than the ones based on the solvent-
mediated approach. The disadvantages are that averag-
ing generally involves an ensemble of compact conforma-
tions that are nonphysical, and the derivation requires
additional assumptions. The most frequently used refer-
ence state uses the mole fractions to define mrefIJ ¼ mobs 3
XI 3 XJ, where mobs is the total number of interacting
pairs with the distance constraints d < rij < R, and XI is
the mole fraction of atom type I, defined as mI/m, that is,
the atom composition of the entire complex was used to
normalize the number of expected interactions. A similar
approach is based on the same formulas, but considering
only the atoms in some neighborhood of the interface
when calculating the reference frequencies. Both ap-
proaches assume that the reference state contains a ran-
dom mixture of atoms in volumes that correspond either
to the complex or to the interface region.
Most residue-mediated potentials have been derived

from folded protein structures, and were primarily used
for finding near-native conformations among protein struc-
tures generated by some prediction algorithm, involving
searches in a large conformational space.17,18,20,22 Because
rigid-body protein–protein docking requires searching
only in six dimensions, it is feasible to generate large sets
of docked conformations. Using only the van der Waals
interaction term as the target function, the resulting con-
formations do not depend on specific atomic interactions,
and hence, are essentially random complexes, but with
good shape complementarity. Thus, frequencies of atom
pair interactions in the reference state can be obtained by
counting the specific atom–pair interactions in such decoy
sets. Because our goal is finding docked structures with

high levels of ‘‘chemical’’ complementarity among the
many compact structures generated by the FFT algorithm,
it is natural to define the probability for an atom pair as
the frequency of the pair in the native complexes, divided
by the frequency of the same pair in the decoys. The
frequencies are normalized using the total numbers of
atom pairs in the native structures and in the decoys,
respectively. Hence, the relative sizes of native and decoy
sets do not matter, provided that they are large enough to
yield appropriate statistics. We note that an approach
somewhat similar to DARS has been developed by Berna-
uer et al.,43 who considered the native states of about
80 protein complexes, together with about 100 decoys for
each complex. However, rather than the decoys providing
the reference distribution function as in the current work,
an evolutionary learning program was used to generate a
scoring function to separate the natives and the decoys.
Although the approach needs further refinement, it shows
that it is possible to generate meaningful decoy sets of
docked protein structures, and to use the properties of
these decoys for discrimination.

RESULTS AND DISCUSSION
Developing and Testing DARS Potentials

Developing the structure-based DARS potential re-
quires the selection of atom types, the definition of inter-
actions (i.e., distance cutoff values), a training set of
native complexes, and a decoy set of docked complexes for
the reference state. Because we also used the Atomic
Contact Potential (ACP) in the FFT calculations, for sim-
plicity we adopted the same 18 atom types defined by
Zhang et al.28 in ACP. Although the classification of
atoms was somewhat intuitive, it was generally based on
considerations of chemical properties and interactions.
A detailed description of the 18 atom types is given in the
original ACP article.28 Here we note only that the back-
bone atoms are considered as separate-atom types N, CA,
C, and O, whereas most hydrophobic side-chain atoms
are in the FCf and LCd categories (Table I). We have used
the cutoff distance of 6.5 Å when counting the frequencies
of atom–atom interactions.

As the training set, we have used a nonredundant data-
base of native protein–protein complexes collected by
Glaser et al.31 from the Protein Data Bank (PDB). The
original set included 621 protein interfaces from 492 PDB
entries. The nonredundant character of this database was
assured by excluding proteins with more than 30%
sequence identity. Although nonredundant, the database
is far from unbiased in terms of representing protein–
protein complexes. In fact, of the 621 interfaces, 404 are
from homodimers. In addition, the set includes a number
of enzyme–inhibitor and antibody–antigen complexes, and
few other types. As will be described, we use the protein–
protein benchmark sets by Chen et al.32 and by Mintseris
et al.33 for testing the docking algorithm, and hence, the
complexes in these benchmark sets were removed from
the training set, resulting in 583 interfaces from 466 pro-
tein entries. This set clearly over-represents oligomeric
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proteins. The fraction of enzyme–inhibitor complexes is
also high. Thus, the resulting potential is expected to work
best for oligomeric proteins and enzyme–inhibitor com-
plexes. Because structures of the separate subunits in
oligomeric proteins are rarely determined, in this article
we will focus on the docking of the enzyme–inhibitor pairs
in the protein docking benchmarks 1 and 2.32,33 For com-
parison we also docked the antibody–antigen pairs in the
benchmark set 1. However, because oligomeric proteins
and enzyme–inhibitor complexes dominate the training
set, the current version of the DARS potential is far from
optimal for antibody–antigen pairs (and the ‘‘other’’ types
of complexes, not considered here).

As discussed, to develop the DARS (Decoys as the Ref-
erence State) type potential one also needs a large set of
decoys, that is, docked structures generated by consider-
ing only shape complementarity as the target function.
We have previously generated 20,000 docked conforma-
tions for each of the 22 targets of the CAPRI docking
experiment.6,7 We use these structures as the reference
decoy set in the current work. Table I shows the 18 3 18
matrix of interaction energies for the resulting DARS
potential. The new approach provides clear improvement
over the Atomic Contact Potential (ACP).28 As we men-
tioned, the ACP describes relatively well the energetics of
a largely hydrophobic interfaces, but almost completely
ignores the electrostatic interactions. In particular, nega-
tive–negative and positive–positive interactions (DOd–
DOd and RNh–RNh) are weakly attractive, and the DOd–
RNh interaction is weakly repulsive.28 As shown in
Table I, the DARS potential does not suffer from these
problems, and most parwise interactions have signs as
expected. For example, the DOd–DOd interaction is
strongly repulsive, whereas the DOd–RNh interaction is
strongly attractive. The only finding that is somewhat
unexpected is the slightly attractive RNh–RNh DARS
energy, most likely due to the interactions between the
hydrophobic parts of the arginine side chains. As usual
with structure-based potentials, the large value of the
SCg–SCg term, representing cystine–cystine interactions,
is an artifact and can be ignored. Disulfide bridges in pro-
tein–protein interfaces are rare, causing this coefficient
to be determined from few occurrences.

We used unbound–unbound (in some cases bound–
unbound) enzyme–inhibitor and antigen–antibody com-
plex structures of the protein docking benchmark 1.032 to
test the DARS potential, first for its ability of finding
‘‘hits,’’ that is, conformations with less than 10 Å Ca

RMSD from the native, in a large set of docked struc-
tures. Throughout the article the RMSD is calculated by
superimposing the unbound receptor (the larger protein)
on the receptor structure in the complex, and calculating
the RMSD for the ligand. The entry 1TAB was excluded,
because it forms a dimer of two complexes, in which the
carboxyterminal tail of the inhibitor extends into the
interface between the two trypsin molecules and inter-
acts with both of them simultaneously,44 and such multi-
subunit interactions are not considered in our calcula-
tions. Table II lists the target complexes. In addition to
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the Protein Data Bank (PDB) code, we show the Coulom-
bic electrostatic interaction energy Eelec between the two
component proteins, calculated with the distance-depend-
ent dielectrics e ¼ 4r, as well as EACP, the interaction
energy through the interface calculated by the Atomic
Contact Potential.28 As discussed, due to the properties of
the ACP,28 a negative EACP indicates a largely hydropho-
bic interface. Thus, Table II shows that in most anti-
body–antigen complexes the interface is mostly polar.
The value of EACP is more variable in enzyme–inhibitor
complexes, but most of these have fairly hydrophobic
interfaces.
The unbound proteins for each target listed in Table II

are given in the original benchmark paper.32 To test the

discriminatory power of structure-based potentials, we
have used these unbound proteins and the DOT docking
program11 with a geometrical scoring function to gener-
ate 20,000 conformations for each target. The column
labeled 20K in Table II shows the number of hits among
these 20,000 structures. For evaluating various scoring
functions we used them to rank the 20,000 conformations,
selected the top 2000, and determined the number of hits.
The better the scoring function, the closer we should get to
the maximum number of ‘‘hits’’ among the 20,000 struc-
tures or ‘‘decoys,’’ shown as 20K. Table II shows first the
discrimination results for a ‘‘mixed’’ strategy we have used
for many years.13,15 The strategy involves calculating the
electrostatic interaction energy Eelec and the ACP energy

TABLE II. Number of Hits Retained by Various Scoring Functions

Complex Typea

Binding free energyb

20Kc

2Kd

Eelec EACP Mixede ACPf DARSg DARS þ ACPh

1ACB e-i �12.23 �16.08 218 99 168 135 132
1AVW e-i �24.39 �0.71 44 2 3 4 4
1BRC e-i �15.08 �7.61 175 39 80 115 108
1BRS e-i �41.17 11.59 113 25 5 25 27
1CGI e-i �14.46 �18.29 161 36 123 27 28
1CHO e-i �14.10 �12.28 183 66 101 91 90
1CSE e-i �18.40 �8.56 248 107 201 64 80
1DFJ e-i �63.93 18.75 31 30 0 30 30
1FSS e-i �35.35 �0.13 15 6 7 5 5
1MAH e-i �30.01 �4.47 12 8 10 8 8
1PPE e-i �19.62 �7.22 354 124 145 174 168
1STF e-i �6.33 �10.25 71 22 36 17 20
1TGS e-i �23.48 �8.37 186 57 153 44 55
1UDI e-i �35.86 �0.53 102 41 78 44 44
1UGH e-i �37.84 0.72 115 34 54 46 44
2PTC e-i �22.87 �3.76 153 57 132 33 46
2SIC e-i �11.74 �14.01 89 66 84 52 61
2SNI e-i �12.18 �12.61 127 56 92 55 58
2TEC e-i �11.67 �11.17 270 131 166 70 75
4HTC e-i �53.05 4.07 118 10 7 47 38
1AHW a-a �44.05 18.89 186 93 0 93 93
1BQL a-a �34.52 7.58 280 43 49 39 39
1BVK a-a �10.98 9.20 234 15 33 22 25
1DQJ a-a �20.51 13.63 35 1 0 1 1
1E08 a-a �21.39 �0.40 90 22 10 55 53
1FBI a-a �38.82 10.80 45 7 3 7 7
1IAI a-a �5.90 �2.22 139 30 82 56 57
1JHL a-a �19.67 10.05 51 10 0 10 10
1MLC a-a �21.44 �3.84 165 40 78 32 48
1NCA a-a �30.96 8.41 72 13 0 13 13
1NMB a-a �20.67 1.38 19 8 3 8 8
1QFU a-a �20.75 �0.74 126 16 45 48 42
1WEJ a-a �37.62 15.92 20 20 0 20 20
2JEL a-a �14.50 8.42 74 7 2 8 7
2VIR a-a �16.99 1.10 118 15 40 12 12

ae-i: enzyme–inhibitor; a-a: antibody–antigen.
bBased on bound complex conformation.
cTwenty thousand structures with the best shape complementarity, generated by DOT.
dTwo thousand structures selected from the 20,000 generated by DOT.
eFive hundred structures with the best EACP and 1500 structures with the best Eelec.
fTwo thousand structures with the best EACP.
gTwo thousand structures with the best values of the DARS potential.
hTwo thousand structures with the best values of the DARS þ ACP potential.
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EACP for all the 20,000 structures, and retaining 500 with
the best (lowest) EACP values, and an additional 1500 with
the best Eelec values. The motivation of this strategy is to
have acceptable discrimination for complexes that are
stabilized by strong hydrophobic interactions, but also for
those that are not. We keep more structures with favor-
able electrostatics, because Eelec is much more sensitive to
small perturbations in the coordinates than EACP. For
comparison, Table II also lists the number of hits within
the 2000 structures with the lowest ACP values, and
clearly shows that the atomic contact potential is a good
discriminator for complexes with a hydrophobic interface
(i.e., when EACP is negative). However, most of the hits
may be lost if EACP is positive, indicating a more polar in-
terface. The ‘‘mixed’’ strategy improves results for many
such complexes, but reduces the number of hits for com-
plexes with a predominantly hydrophobic interface. The
next column in Table II provides the number of hits
among the 2000 conformations with the best (lowest) val-
ues of the new DARS potential. It appears that DARS per-
forms somewhat worse than ACP for complexes with a
hydrophobic interface, but it also finds hits for the electro-
statically driven complexes, achieving a discrimination
performance that is close to the one provided by the
‘‘mixed’’ strategy, although no explicit electrostatic interac-
tions were taken into account. This is an important
advantage, because a contact potential is much less sensi-
tive to small perturbations in the coordinates than the
electrostatic energy, and this will contribute to improving
the docking results. Finally, the last column of Table II
(DARS þ ACP) demonstrates that the results can be fur-
ther improved by a simple combination of the DARS and
ACP potentials. Although DARS þ ACP does not necessar-
ily produce the best results among the considered strat-
egies, it does not fail badly for any of the complexes, dem-
onstrating a balanced performance.
For the docking we calculate the eigenvalues and eigen-

vectors of the matrix of pairwise interactions in the
DARS þ ACP potential, and restrict consideration to
the eigenvectors corresponding to the few eigenvalues with
the largest magnitude. Table III shows the top four eigen-
values and the corresponding eigenvectors of the combined
DARS þ ACP potential. If we ignore the last column (CSg),
representing cystine–cystine interactions, and based on
poor statistics, the largest elements in the first eigenvector
are for LCd and FCf, both groups representing hydrophobic
side-chain atoms. Thus, the first and largest eigenvalue
represents favorable (i.e., negative) hydrophobic interac-
tions. Notice that in the second eigenvector the hydropho-
bic components are small, that is, the favorable contribu-
tion due to the first (negative) eigenvalue is not affected.
The second eigenvector shows that Lys side chains
(i.e., groups KNf and KCd) are generally not favorable in
the interface. The same vector indicates repulsive same-
sign electrostatic (i.e., DOd–DOd and RNh–RNh) interac-
tions. Because the eigenvalues k3 and up are substantially
smaller in magnitude than k1 and k2, in this article we
restrict consideration to the first two eigenvectors.
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Docking Results

To test the new FFT program we first docked the en-
zyme–inhibitor pairs from the protein docking benchmarks
1.0 and 2.0.32,33 This test set, shown in Table IV, excludes
the complexes 1D6R and 1EWY for the same reason as
1TAB was excluded, that is, the complexes are oligomeric,
and the intersubunit interactions affect the results.
Although Table IV lists the PDB codes of the complexes, in
the docking calculations we used the unbound–unbound or
the unbound–bound structures of the component proteins
as available in the benchmark sets.32,33 Notice that for
some complexes (e.g., for 1ACB) the two sets provide differ-
ent unbound structures. In such cases the structures given
in benchmark set 132 were used. In each calculation the
center of mass of these component proteins were moved to
the center of the coordinate system, and were randomly
rotated to avoid that the correct docked conformations
occur at a grid position. We checked on several complexes
that such random perturbations in grid placement can
change the results by more than 10%.

Table IV shows the percentage of the hits (structures
with less than 10 Å Ca RMSD from the native) in the top
1000 and in the top 2000 docked conformations generated
by our program PIPER, as well as by one of the best FFT-
based docking programs ZDOCK.12 According to these
results, PIPER is a major improvement relative to
ZDOCK, although the latter also works extremely well
for enzyme–inhibitor complexes. Generating 2000 struc-
tures for each of the 33 complexes, which is the default
for the ZDOCK server, PIPER performs much better
(defined as producing at least 50% more hits) than
ZDOCK in 14 cases, it is better in 11 cases, worse in 5,
and the results are essentially the same for 3 complexes.
Thus, the results improve in 75% of the tests, and get
worse in 15%. Considering only the top 1000 conforma-
tions, the improvements are even more pronounced for a
number of complexes. The results become much better in
19 cases, better in 4, worse in 6, and remain essentially
unchanged in 4. It is particularly advantageous to have a
larger number of hits in the top 1000 structures, because

TABLE IV. Percentage of Hits Among Conformations Generated by PIPER and ZDOCK for Enzyme–Inhibitor
Complexes

Complex

1000 predictions 2000 predictions

PIPER ZDOCK PIPER ZDOCK Shapea Filterb

1ACB 63.2 8.9 50.2 7.3 16.3 8.4
1AVW 8.1 5.7 6.1 4.0 0.1 0.5
1AVX 19.3 8.8 13.4 5.9 0.0 0.7
1AY7 0.5 2.1 0.8 1.7 5.7 2.7
1BRC 37.5 13.5 37.6 11.1 14.1 9.8
1BRS 0.7 3.3 1.3 3.6 10.2 5.7
1BVN 44.3 5.4 30.2 5.0 9.7 7.5
1CGI 47.7 17.6 42.8 14.2 30.6 11.8
1CHO 51.0 9.5 41.7 7.9 3.7 3.9
1CSE 4.5 1.9 4.3 2.4 0.0 1.4
1DFJ 3.0 16.3 2.1 10.1 2.9 1.4
1E6E 5.5 3.3 7.0 3.1 0.0 0.0
1EAW 11.4 13.1 11.5 10.0 4.2 6.4
1EZU 1.8 0.1 1.9 0.1 0.1 0.2
1F34 0.1 3.3 0.3 2.3 0.0 0.0
1FSS 2.1 1.4 2.0 1.5 0.0 0.1
1HIA 0.0 0.0 0.0 0.0 0.2 0.5
1KKL 0.0 0.0 0.0 0.0 0.0 0.0
1MAH 17.1 2.5 12.6 1.9 0.2 0.9
1PPE 60.5 47.8 43.7 33.9 26.3 11.9
1STF 3.5 7.0 2.3 4.4 0.8 0.5
1TGS 36.5 14.2 24.1 11.8 15.5 5.5
1TMQ 2.5 1.0 2.4 1.1 0.2 0.2
1UDI 21.7 3.3 16.5 2.2 0.0 0.4
1UGH 9.7 3.2 7.4 2.2 0.0 0.1
2KAI 6.1 2.3 7.5 2.4 2.5 2.5
2MTA 16.1 0.5 14.4 0.4 0.1 0.0
2PTC 32.2 6.3 21.8 5.5 4.6 2.5
2SIC 7.6 7.8 5.5 5.9 1.0 1.1
2SNI 10.3 0.9 9.4 1.5 1.1 1.5
2TEC 23.5 17.0 16.0 10.8 11.5 5.2
4HTC 7.3 4.3 4.8 3.3 1.2 0.7
7CEI 17.8 19.2 13.4 13.3 0.0 0.6

aTop 2000 structures generated using shape complementarity.
bThe 2000 best scoring structures selected from the 20,000 with the best shape complementarity.
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Fig. 2. The number of hits (near-native structures with less than 10 Å RMSD from the native) as function of the number of docked conformations
retained from the FFT calculations for the enzyme–inhibitor complexes in the protein–protein docking benchmark sets 1 and 2. The curves are coded
as follows: red crosses—PIPER; green stars—ZDOCK, version 2.3; blue—predictions using shape complementarity as the scoring function.

Fig. 3. The number of hits (near-native structures with less than 10 Å RMSD from the native) as function of the number of docked conformations
retained from the FFT calculations for the antibody–antigen complexes in the protein–protein docking benchmark 1. Residues not in the Complemen-
tarity Determining Regions (CDRs) were masked by removing the attractive shape complementarity term. Color codes are as in Figure 2.
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retaining 1000 rather than 2000 structures substantially
facilitates finding the near-native conformations among
them.13,15 The improvement is substantial for a number
of complexes: for example, the top 1000 structures gener-
ated by ZDOCK for the complex 1ACB contains 89 hits,
whereas the number of hits in 1000 structures generated
by PIPER is 632. Of course, not all cases are this great,
but as we stated, the improvement is more than 50% over
ZDOCK for 19 of the 33 complexes in Table IV. The test
set includes one ‘‘difficult’’ case (1KKL) for which neither
method generated any near-native solution. The other
structures for which PIPER did not give good results
(e.g., 1BRS and 1DFJ) are nontypical enzyme–inhibitor
complexes in which the association is driven by electro-
statics rather than hydrophobic shape complementarity.
In fact, the Atomic Contact Potential (ACP) is generally
positive in these complexes (see Table II). It is clear that
our current DARS potential is far from optimal if the
interface is not hydrophobic enough, and further develop-
ment is required for this case.
Table IV also shows the percentage of hits in the 2000

structures generated when using only shape complemen-
tarity as the scoring function. Finally, the last column, la-
beled ‘‘Filter,’’ shows the results of generating 20,000 con-
formations using the shape complementarity part as the
scoring function, and then selecting among them the 2000
conformations with the lowest values of the complete scor-
ing function, including electrostatics and the DARS poten-
tial. From these results it is clear that including the latter
energy terms in the docking stage yields much better
results than docking first for good shape complementarity,
and then reranking and filtering with the additional
energy terms. In fact, for enzyme–inhibitor complexes
even the top 70,000 decoys generated using only shape
complementarity include fewer ‘‘hits’’ than the 2000 struc-
tures generated by using the complete scoring function in
the docking. Figure 2 shows, for the enzyme–inhibitor

complexes, how the number of hits depends on the number
of docked structures retained. For comparison, the same
curves are also shown for ZDOCK and for the use of shape
complementarity term as the scoring function.

For the antigen–antibody docking problems we re-
stricted consideration to the complexes in benchmark set
1.0. The results shown in Table V and Fig. 3, although
comparable to those obtained by other docking methods,
should be considered preliminary. PIPER yields more hits
than ZDOCK in 12 of the 16 test problems, but the
improvements are much less substantial than the ones we
have seen for enzyme–inhibitor complexes. In fact, we al-
ready noted that the current version of the DARS poten-
tial is far from optimal for antibody–antigen complexes.
This is not surprising, as analyses of protein complexes34–37

show that the interfaces in enzyme–inhibitor and anti-
body–antigen complexes substantially differ.4 In particu-
lar, the latter interfaces are generally more polar, more
planar, less well packed, and include more water mole-
cules than the enzyme–inhibitor interfaces, and these dif-
ferences result in more challenging docking and free
energy evaluation problems. The analysis of docking
results from three different research groups clearly shows
this increased level of difficulty, even when the the seg-
ments that belong to the Complementarity Determining
Regions (CDRs) are a priori known.4 Therefore, we are
convinced that the results can be substantially improved
by introducing a potential specific to these pairs. However,
because the number of antigen–antibody complex struc-
tures in the PDB is relatively small, the development of
antigen–antibody potentials will require reducing the
number of atom types from 18, a topic of our current
research. Nevertheless, the antibody–antigen docking
results shown in Table V are good enough to indicate that
the use of pairwise potentials in docking increases the
number of hits among the complex structures generated.

The program PIPER was implemented in C for differ-
ent cluster environments. The CPU time required for
determining an average complex by docking the free com-
ponent proteins is 40 min on a 30-dual processor cluster
with P3 1GHZ nodes, and it is approximately 2 min on
512 nodes of an IBM BlueGene/L. The PIPER program is
free to academic users, and will be sent upon request.

CONCLUSIONS

We have extended the well-known Fast Fourier Trans-
form (FFT) correlation approach for use with pairwise
potentials defined among K different atom types. The
method involves the eigenvalue–eigenvector decomposi-
tion of the K 3 K interaction energy matrix, which con-
verts the scoring function to the sum of K correlation
functions. Although correlation functions can be effi-
ciently evaluated by FFT calculations, the computational
costs are prohibitive if K is large. The main contribution
of this article is the observation that one can restrict con-
sideration to a few (two to four) dominant eigenvalues
and the corresponding eigenvectors of the interaction
energy matrix without substantially reducing the accu-

TABLE V. Percentage of Hits Generated for
Antibody–Antigen Complexes

Complex

1000 predictions 2000 predictions

PIPER ZDOCK PIPER ZDOCK

1AHW 13.1 8.7 10.0 7.0
1BQL 0.4 8.9 0.4 7.0
1BVK 4.1 0.7 4.2 1.1
1DQJ 0.0 0.0 0.0 0.0
1EO8 2.5 0.0 2.5 0.1
1FBI 3.2 1.4 3.1 1.4
1IAI 3.5 0.4 3.2 0.7
1JHL 1.0 0.0 0.8 0.0
1MEL 3.5 1.4 3.8 1.3
1MLC 1.6 3.2 1.3 2.7
1NCA 0.8 0.0 0.8 0.0
1NMB 0.0 0.7 0.0 0.5
1QFU 5.4 0.5 4.5 1.0
1WEJ 2.6 1.8 3.3 2.5
2JEL 13.6 6.8 11.1 5.8
2VIR 0.3 0.0 0.5 0.1
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racy of the method, but substantially reducing the com-
putational costs and rendering the approach computa-
tionally feasible.
We use the new FFT method with a novel structure-

based potential termed DARS (Decoys As the Reference
State), extracted from a set of protein–protein complex
structures. The novelty of the DARS potential is that we
generate large sets of docked structures using shape com-
plementarity as the scoring function, and use these struc-
tures to derive the frequencies of atom pair interactions
in the reference state. Because the decoy structures do
not depend on specific atomic interactions, they can be
considered random complexes. Thus, the probability of
interaction between two atoms of types I and J, respec-
tively, can be estimated by determining the frequency of
I–J interactions in protein complexes, divided by the fre-
quency of I–J interactions in the decoy set. Because our
goal is finding docked structures with high levels of
‘‘chemical’’ complementarity among the many compact
structures generated by the FFT algorithm, it is natural
to define the probability of interaction between two atoms
as the frequency of the pair in native complexes, divided
by the frequency of the same pair in the decoys. We have
found the best performance using a linear combination of
the new DARS potential and the Atomic Contact Poten-
tial (ACP),28 an atom-level extension of the Miyazawa-
Jernigan potential. Note that although the results of this
article are based on the use of the combined DARS þ
ACP potential, the new FFT method can be used with
any pairwise potential as part of the scoring function.
The method has been tested on docking enzyme–inhibi-

tor and antibody–antigen pairs. It was expected that the
use of pairwise potentials would improve the results. We
have found that the improvement is substantial for
enzyme–inhibitor complexes, whose energetics is well
described by the current version of the DARS þ ACP
potential. Indeed, for 19 of the the 33 enzyme–inhibitor
pairs considered, the number of ‘‘hits’’ (near-native struc-
tures) in the top 1000 docked conformations has been
increased by more than 50% relative to ZDOCK, one of
the best FFT-based docking programs.12 Although the
improvements are less substantive for antigen–antibody
complexes, the results show that, due to the use of pair-
wise potentials, the new program PIPER tends to pro-

duce more hits than traditional FFT-based methods. Our
results clearly show that the improvement is due to the
use of the pairwise potential directly in the docking calcu-
lations. In fact, the two-step strategy of generating a
large number of docked conformations and then ranking
them with the pairwise potential yields much fewer near-
native structures. We believe that the results for anti-
body–antigen pairs can be further improved by develop-
ing a specific potential which is more appropriate for this
type of complexes.
Because we need only a few eigenvectors to estimate

the pairwise interaction matrix, the computational load is
relatively moderate. This implies that the method will be
applicable not only to contact potentials considered in the
present work but also to distance-dependent potentials.

The use of more detailed scoring functions is expected to
further improve the results. We note that the distance-
dependent potentials will be represented as sums of pair-
wise contact potentials with different cutoff radii, and
hence, they will increase the number of required FFT cal-
culations. However, with computer speeds consistently
increasing, the approach will remain computationally fea-
sible. Thus, the primary limitation on further improving
the method is the accuracy of the potential functions. This
accuracy in part is determined by the availability of pro-
tein–protein complex structures, which is expected to grow.

We note that in the past pairwise potentials have been
used with great success in the second step of docking for
finding near-native docked conformations among the
thousands of structures generated. As shown here, it is
much more effective to use such pairwise potentials di-
rectly in the docking step rather than for discrimination.
Indeed, we have shown that the top 1000 structures from
the docking generally include a fair number of near-native
complex conformations. However, it is still necessary to
identify the best models among these 1000 retained. It is
clear that we cannot use the same potential that has been
used for docking. More generally, we have recently shown
that the combination of different potentials can substan-
tially improve docking and discrimination results.25 This
fact emphasizes the need for developing higher accuracy
potentials that combine molecular mechanics with empiri-
cal solvation and entropic terms, and are able to discrimi-
nate near-native complex conformations from the rest of
structures generated by the docking.
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