Intrinsically disordered proteins

Zsuzsanna Dosztányi

EMBO course Budapest, 3 June 2016

IDPs

- Intrinsically disordered proteins/regions (IDPs/IDRs)
- Do not adopt a well-defined structure in isolation under native-like conditions
- Highly flexible ensembles
- Functional proteins
- Involved in various diseases

JMB

Intrinsically Unstructured Proteins: Re-assessing the Protein Structure-Function Paradigm

Peter E. Wright* and H. Jane Dyson*

Department of Molecular Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla CA 92037, USA A major challenge in the post-genome era will be determination of the functions of the encoded protein sequences. Since it is generally assumed that the function of a protein is closely linked to its three-dimensional structure, prediction or experimental determination of the library of protein structures is a matter of high priority. However, a large proportion of gene sequences appear to code not for folded, globular proteins, but for long stretches of amino acids that are likely to be either unfolded in solution or adopt non-globular structures of unknown conformation. Characterization of the conformational propensities and function of the non-globular protein sequences represents a major challenge. The high proportion of these sequences in the genomes of all organisms studied to date argues for important, as yet unknown functions, since there could be no other reason for their persistence throughout evolution. Clearly the assumption that a folded three-dimensional structure is necessary for function needs to be re-examined. Although the functions of many pro-

Ordered structures from the PDB

Over 100000 PDB structures

Not everything in the PDB is ordered

Cofactors, complex, DNA-RNA, crystal contacts

Where can we find disordered proteins?

In the literature

Failed attempts to crystallize Lack of NMR signals Heat stability Protease sensitivity Increased molecular volume "Freaky" sequences ...

Disprot database:

www.disprot.org

Where can we find disordered proteins?

In the PDB

Missing electron density regions from the PDB

NMR structures with large structural variations

p53 tumor suppressor

Funnels

Flock et al Curr Opin Struct Biol. 2014; 26:62

Sequence properties of IDPs

- Amino acid compositional bias
- High proportion of polar and charged amino acids (GIn, Ser, Pro, Glu, Lys)
- Low proportion of bulky, hydrophobhic amino acids (Val, Leu, Ile, Met, Phe, Trp, Tyr)
- Low sequence complexity
- Signature sequences identifying disordered proteins

Protein disorder is encoded in the amino acid sequence

How can we discriminate ordered and disordered regions ?

Prediction: classification problem

Input

- 1. sequence
- 2. propensity vector
- 3. alignment (profile)
- 4. interaction energies

Method

- 1. statistical methods
- 2. machine learning
- 3. structural approach

Output (property)

- 1. binary
- 2. score

Training/Assessment

DisProt
PDB

DISOPRED2

.....AMDDLMLSPDDIEQWFTED.....

Raw profile from PSI-BLAST Log File

Position-based scoring matrix used

Trained in missing residues from X-ray structures

on-pase	30 3	3CO3	rang	द्र सम्ब	125.	LX U	IRec.	2											
А	R	N	D	С	Q	Е	G	ы	Ι	ĩ.	к	м	F.	P.	S	т	ស្ត	Y	v
-3	-4	-4	-4	-3	-4	-4	~ 4	-2	-1	-1	-4	-1	8	-5	-3	-3	0	2	-2
0	-1	-1	з	$^{-4}$	З	4	1	-1	-4	-4	0	-3	~4	~2	-1	-2	-4	-3	-3
0	-1	2	1	-3	4	0	-1	~2	-4	-3	1	-2	-4	-2	2	0	-4	-3	-3
-2	-3	-4	-5	~2	~3	-4	-6	-4	0	6	0	0	-1	4	-3	-2	$^{-4}$	-2	0
0	-3	-1	-2	-3	0	-2	4	~3	-3	0	-2	-2	-4	-3	3	1	~4	4	3
0	2	0	4	-4	1	2	1	-2	-4	-4	0	-3	~4	~3	1	-2	-5	-4	-4
-1	5	3	~2	-4	-1	-1	1	-2	-1	-4	1	-3	-4	-3	1	-2	-5	-4	-4
-2	-3	-4	-5	-3	-3	- 4	-5	-4	3	4	-1	1	2	-4	-3	-2	-3	-1	0
-2	3	2	-2	-4	2	1	-3	-2	-3	-3	1	1	-4	-3	2	1	-4	3	-1
0	2	3	1	-4	0	0	0	-2	-4	4	1	-3	-4	-3	2	0	-5	-4	4
5	-3	-3	-3	-2	-3	-3	-2	-3	1	~2	-3	-2	1	-3	0	1	~4	-2	0
-1	-4	-5	-5	-3	- 4	-4	~5	~4	3	3	-4	2	З	-5	-3	-2	5	-1	2
0	3	3	0	~4	3	0	1	-2	-4	-4	1	-3	-4	-3	1	-1	-4	-3	-4
-1	0	1	0	-4	1	-1	-1	-2	~4	-3	5	-2	0	-3	0	-2	-4	0	-3
-2	-3	-1	~5	~3	-3	-4	-5	-4	3	4	0	4	2	-4	-3	-2	-3	-2	C
C	3	0	-2	-3	-1	0	0	-2	0	0	1	0	-1	-3	2	0	-4	~3	0
-1	1	- 3	-2	-4	0	-2	4	-2	-4	-4	0	-3	0	-3	0	0	-3	0	4

Ward et al. J.Mol. Biol. 2004; 337:653

Globular proteins form many favorable interactions to ensure the stability of the structure

Disordered protein cannot form enough favourable interactions

Energy estimation method

Based on globular proteins

No training on disordered proteins

Dosztanyi (2005) JMB 347, 827

GlobPlot

Globular proteins form regular secondary structures, and different amino acids have different tendencies to be in them

Compare the tendency of amino acids:

- to be in coil (irregular) structure.
- to be in regular secondary structure elements

Disorder propensity

Typical output

GlobPlot

Different flavors of disorder

Short and long disordered regions have different compositional biases

PONDR VSL2

Differences in short and long disorder

- amino acid composition
- Short disorder is often at the termini
- methods trained on one type of dataset tested on other dataset resulted in lower efficiencies
- Short version Long version
- PONDR VSL2:

separate predictors for short and long disorder *combined*

length independent predictions

Peng (2006) BMC Bioinformatics 7, 208

Evaluation

ROC curve

For each value of P in increments of 0.01 the TP-rate & the FP-rate are calculated, and the 'Area Under Curve' (AUC) score is calculated.

Prediction of protein disorder

- Disordered is encoded in the amino acid sequence
- Can be predicted from the sequence
- ~80% accuracy
- Large-scale studies
 - Evolution
 - Function
- Binary classification

Genome level annotations

- Bridging over the large number of sequences and the small number of experimentally verified cases
- Combining experiments and predictions
 - MobiDB: http://mobidb.bio.unipd.it
 - D2P2: http://d2p2.pro
 - IDEAL: http://www.ideal.force.cs.is.nagoya-u.ac.jp/IDEAL/
- Multiple predictors
- How to resolve contradicting experiments/ predictions?
 - Majority rules

Functions of IDPs

- I Entropic chains
- II Linkers
- III Molecular recognition
- IV Protein modifications (e.g. phosphorylation)
- V Assembly of large multiprotein complexes

Protein interactions of IDPs

Coupled folding and binding

- Entropic penalty
- Functional advantages
 - Weak transient, yet specific interactions
 - Post-translational modifications
 - Flexible binding regions that can overlap
 - Evolutionary plasticity

Binding regions within IDPs

- Complexes of IDPs in the PDB: ~ 200
- Known instances: ~ 2 000
- Estimated number of such interactions in the human proteome: ~ 1 000 000

- Experimental characterization is very difficult
- Computational methods

Binding regions within IDPs

SLIMs: Short linear motifs

3-11 residues long, average size 6-7 residues although enriched in IDRs, around 20% are in located within IDRs

Disordered binding regions, Morfs

undergo disorder to order transition upon binding usually less then 30 residues, can be up to 70

Intrinsically disordered domains

evolutionary conserved disordered segments

p27 Inhibitor of CDK2-CyclinA complex.

[RK].L.{0,1}[FYLIVMP]

CDN1B_HUMAN 30-33 HPKPSACRNLFGPVDHEEL MPIP1_HUMAN 11-15 PEPPHRRRLLFACSPPPAS HSHTLKGRRLVFDNQLTIK SNPPKPLKKLRFDIEGSDE P53_HUMAN 381-385 GQSTSRHKKLMFKTEGPDS VE1_HPV18 127-130 SGQKKAKRRLFTISDSGYG

CDC6_HUMAN 94-98 RB_HUMAN 873-877

Bioinformatical approaches

(~10, as opposed to the more than 50 disorder prediction methods)

 Biophysical properties (ANCHOR)
Machine Learning methods (MorfPred, Morf_{chibi}, DISOPRED3)
Linear motifs (Regular Expression, PSSMs)
Conservations patterns (SlimPrints, PhyloHMM)

Prediction of binding sites located within IDPs

- Interaction sites are usually linear (consist of only 1 part)
- enrichment of interaction prone amino acids
- can be predicted from sequence without predicting the structure

Heterogeneity

- adopted secondary structure elements
- size of the binding regions
- flexibility in the bound form

Prediction of disordered binding regions – ANCHOR

What discriminates disordered binding regions?

- A cannot form enough favorable interactions with their sequential environment
- It is favorable for them to interact with a globular protein
- Based on simplified physical model
 - Based on an energy estimation method using statistical potentials
 - Captures sequential context

ANCHOR

Dosztanyi et al. Bioinformatics. 2009;25:2745

DISOPRED3

- Uses three SVMs
 - Simple sequence profile
 - PSI-Blast profiles (very slow)
 - PSI-Blast profiles with global features
- trained on short chains in complex

DISOPRED3

Intrinsic disorder profile

Amino acid position

Prediction of binding regions within IDPs

- Combined predictions provide more biologically meaningful predictions
- Lot of rooms for improvements...
- What is the binding partner?