¢

N

THE HEBREW

S Peptide docking tutorial

Institute for
Medical
Research
-Canada

Nawsad Alam, Ora Schueler-Furman
The Hebrew University of Jerusalem, Israel

EMBO
Practical
Course

Ay
EMBO

EMBO Budapest ___“ excellenceinlife sciences

Welcome to the peptide-docking tutorial! This exercise will introduce you to our peptide
docking protocol Rosetta FlexPepDock “ 2 and its different flavors, and teach you how to
generate accurate structures of peptide-protein complexes, starting from an approximate
starting conformation. Time permitting, we will also show you how to generate such
starting conformations when the peptide binding site is not known, using our
ClusPro/PIPER FFT-based mapping protocols (developed in collaboration with Dima
Kozakov): PeptiMap ? uses solvent mapping to identify putative peptide binding sites on a
protein surface, and PeptiDock (unpublished) uses the mapping of peptide fragments to ab

initio dock motif-containing peptides.

Many signaling and regulatory processes involve peptide-mediated protein interactions,
i.e. the binding of a short stretch in one protein to a domain in its partner. Computational
tools that generate accurate models of peptide-receptor structures and binding improve
characterization and manipulation of known interactions, help to discover yet unknown
peptide-protein interactions and networks, and bring into reach the design of peptide-

based drugs for targeting specific systems of medical interest.

Peptide docking differs from protein-protein docking mainly by the fact that the peptide

usually changes its conformation considerably upon binding to the receptor. Consequently,

peptide docking protocols need to include conformational sampling of internal peptide
degrees of freedom (phi, psi, chi), in addition to the sampling of the rigid body orientation.
Rosetta FlexPepDock was built to generate precise models of protein-peptide complex
structures, by effectively addressing the challenge of the considerable conformational
flexibility of the peptide. Rosetta FlexPepBind is an extension of this protocol that allows
characterizing peptide binding affinities and specificities of various biological systems,
based on the structural models generated by Rosetta FlexPepDock * °. Here, we provide
detailed descriptions and guidelines for the usage of these protocols and highlight the
variety of different challenges that can be met and the questions that can be answered

with Rosetta FlexPepDock.

Time (and interest) permitting, we will extend our exercise to include approaches for the
full ab initio docking of peptides: Not always is the peptide binding site known, and not
always is it possible to generate an approximate structure based on a homolog complex. In
these cases global docking protocols are necessary to generate such a starting structure.
Here we will present the protocols that we have optimized for this task using
ClusPro/PIPER FFT-based mapping (in collaboration with Dima Kozakov): PeptiMap uses
solvent mapping to identify putative peptide binding sites on a protein surface, and

PeptiDock performs rigid ab initio docking of a set of motif-containing peptide fragments.

The tutorial consists of the following parts:

(1) Local refinement of an approximate model of a peptide-protein complex, using the
FlexPepDock server: This part will provide you a quick introduction of peptide docking.
We will look at the results of the prediction and learn to assess the quality and features
of the modeled structures.

In many cases, an approximate model of an interaction is available from a homolog
complex (e.g. peptide A bound to a peptide binding domain solved bound to peptide B),

and local refinement will sample and identify an accurate conformation.

(2)

Local refinement, using command lines in LINUX: This part will teach you how to run
the prediction yourself, introduce you to the Rosetta Modeling Suite, and explain the

different parameters that can be tuned to customize your simulation.

(3) Ab initio peptide docking: This part will describe how to model the structure of a

(4)

peptide — protein complex when no information about the peptide conformation is
known (but the binding site is given).

Here we will introduce more extended sampling of peptide degrees of freedom, using
the Rosetta fragment sampling strategy. We will describe fragments and fragment
sampling, and the parameters that are important for ab initio docking.

FlexPepBind - prediction of binding partners for a given peptide-binding domain:
using a template structure of a solved peptide-protein complex and a small set of
known substrates/non-substrates, we will attempt to distinguish these two groups
based on the structures generated by FlexPepDock simulations and their associated
binding energies. We will learn the basics of this approach, and in particular experience
the use of constraints to restrict the considered peptide conformations to conform to
specified features. This, to provide a more precise description system and to prevent

false positives.

Time permitting

(5)

(6)

Approaches for full blind docking — PeptiMap server: prediction of peptide binding
sites. Reliable identification of peptide binding sites can help focus sampling to one, or
a few, sites on the receptor surface. The PeptiMap approach is based on experimental
evidence that small organic molecules of various shapes and polarity tend to
accumulate at sites that overlap with peptide and protein binding pockets. Using FFT
based docking of solvent molecules and filtering according to characteristics of peptide
binding sites, PeptiMap is able to predict peptide binding sites with high accuracy.

Approaches for full blind docking - PeptiDock server: prediction of approximate
peptide-protein complexes by fast rigid docking of motif-containing peptide

fragments extracted from the PDB. We have recently developed a global peptide

docking protocol that uses motif information of the peptide sequence to extract a pool

of fragments similar to the motif sequence and dock these fragments using the PIPER

FFT-based docking protocol °.

In summary, we introduce in this tutorial a wide range of tools which can be used to model

and manipulate known, as well as unknown, novel peptide-protein interactions. On the

way, you will learn how to run Rosetta simulations in the LINUX environment, and get to

know different servers and what they can provide for your research.

Instructions and files needed for the different parts are provided in separate directories in

the common EMBO_FlexPepDock tutorials/ directory.

Let’s start:

» Determination of adequate amount of sampling needed

Before we start using the various FlexPepDock protocols we should know how to choose

among various protocols.

R/
A X4

R/
A X4

% Can | use the FlexPepDock refinement protocol, which will perform small

perturbations of the peptide backbone dihedrals with on the fly side-chain rotamer
sampling, or

will simple minimization do, or

do | need FlexPepDock ab intio docking, which will sample the peptide backbone
conformation very extensively using fragments derived from solved crystal

structures?

The amount of sampling depends on complexity of the problem. The optimal parameters

of the different FlexPepDock protocols depend on the amount of available information

about the interaction studied.

B

*

FlexPepDock refinement: If the starting structure is obtained using homology

modeling of a similar peptide sequence bound to the receptor or a homolog of the

receptor, then it is likely that the starting conformation is close to the native
conformation. In such cases one can use the refinement protocol to optimize the
starting conformation to a near-native structure. As an example, various peptides
binding to the PDZ domains show similar interaction features at the conserved
binding site; also, peptide substrates binding to the active site of various enzymes
show similar conformations. In such cases the refinement protocol can be used to
generate a relatively small number of models (e.g. 200-1000), and even better,
when constraints can be defined that characterize peptide interactions, such as the
interactions critical for binding of a peptide at the active site of an enzyme; less

models need to be generated to ensure the sampling of near-native conformations.

X/
°e

Simple minimization: We have found that for enzymatic systems, in many cases a

simple minimization helps to model peptide efficiently at the active site.

X/
°

Ab initio FlexPepDock: If only the binding site is known, but there is no previous
knowledge about the peptide backbone conformation, then it is advised to use the
FlexPepDock ab intio protocol to generate a considerably larger number of models
(e.g. 50,000) to sample a larger space, and to guarantee convergence of the
protocol. This helps to reliably identify more distant low-energy conformations in

the energy landscape.

It is important to note that the refinement protocol can refine models which are close to
the correct solution both in terms of Cartesian, as well as dihedral ¢/ distance. Even if the
peptide is placed in the correct rigid body orientation, but needs to undergo significant
dihedral changes (e.g., transition from extended conformation to helix), it is advised to use
the ab-initio protocol which will use fragments to sample large dihedral changes more

efficiently.

Running FlexPepDock refinement using the FlexPepDock refinement
webserver

The FlexPepDock refinement server allows refinement of coarse peptide-protein models to
near-native accuracy. In this setting the input model should be close to the right solution
both in the Cartesian and phi-psi space (effective range: < 5.5A peptide backbone-RMSD, <
50° phi-psi angle RMSD).

\YT
flex 2 dock
lex_) OC High resolution modeling of peptide-protein interactions

FlexPepDock
r —
- "'-—‘—-‘—"\

Input model | | ' | FlexPepDock prediction

In this exercise we will first go through the server webpage and learn how to submit jobs.
We will then inspect the results of a demo run provided on the webpage. Then we will
submit a refinement job for the complex of the peptide HAGPIA (from the HIV capsid
protein) bound to cyclophilin A. The structure of the peptide-protein complex has been
solved using X-ray crystallography (protein data bank [PDB] id 1AWR). The input structure
to the server will be the bound receptor with the peptide bound in extended conformation

in the binding site. The goal is to refine the peptide to near-native conformation.

* Location of files for this exercise:
1 Refinement of protein peptide complex using FlexPepDock Server
* Required input (located in input_files/):
o 1AWR_ex.pdb : The starting structure with the peptide in extended
conformation

o 1AWR.pdb : The native structure (for comparison)

X/
°

X/
°e

X/
°e

Visit http://flexpepdock.furmanlab.cs.huji.ac.il and submit the refinement job (Hands-

on demonstration on the screen). See Figure 1 for detailed instructions.

Inspect the model using Chimera or PyMOL (your choice): load the native structure,
the starting structure, and the top-10 models. Are critical features of the interaction
recovered?

Inspect the score vs. rmsd plot. How does the energy landscape look like? Can you
identify an energy funnel around the native conformation? Are we sampling enough, or
should we sample more? Locate the model with the best energy on this plot. What
RMSD to the native structure does it show? Is this an accurate prediction?

For demonstration purposes, we have used here a starting structure of the bound
receptor and an extended peptide. How would a more realistic starting structure look

like? Explain.

Figure 1: Overview of FlexPepDock server pages:

(1) Submission of job

Insert reference

Upload the

complex
Input PDB file: | Choose File W P or | Use Demo File
Your e-mail: . ,
Optional but Click on ‘Learn

recommended

Advanced Options
(click to toaale)

more’ to know more

Share this]Ob Learn more’

Name this job: Learn more

structure (if known - for

quality assessment)

Insert a reference PDB Learn more | Choose File | No file chosen

Insert a constraint file Leam more | Choose File | No file chosen

) , Number of

Specify number of low resolution structures (0-300) 100 Learn more

) _ _ models to be

Specify number of high resolution structures (0-300) 100

_ ‘ generated

Select columns to appear in data file:

Y| score hbond_sc rama I_sc pep_sc Select
rmsBB_if fa_atr fa_pair pep_sc_noref LJrmsALL_if scoring and
fa_rep fa_dun Y/ rmsBB fa_sol startRMSbb quality

assessment

Run FlexPepDock measures.

Figure 1, continued:

(2) Results:

A An overlay of the
top 10 models
created by

— FlexPepDock

Provide a constraints file
to introduce e.g. distance
constraints for biasing
simulation to specific

Detailed structural

region | " a7 views forthe top s
- - T models
B rmsE8 vs Score
-180
185
-190
© .:z Plot of the energy Energy landscape can
3 landscape sampled
& 205 by Rosetta provide information
-210
e FlexPepDock about local funnels
-220
228 — —
1 2 3 4 S 6 7
msEs

Top 10 models and
their corresponding
scores

2. Running FlexPepDock refinement using the command line

Now that you have an idea of what a FlexPepDock simulation provides, we will proceed to
your first run of a Rosetta simulation, within the LINUX command line environment. The
tutorial directory named EMBO_FlexPepDock_tutorials has been copied to your

account.

» Login to your account on the server (either clusterl or cluster2) using the Putty SSH

client.

X PuTTY Configuration

Category:
[=)- Session Basic options for your PUTTY session
1 L.oglglng Specify your connection by host name or IP address
= Termina
Keyboard Host Name (or IP address) Port
Bell C'T:_ET.Ttolimesheet@autotimesheet,comﬁ[22 }
Features Protocol: H
osts
= Window O Raw O1TIelnet ORlogn (&) SSH L
A
e Load, save or delete a stored session user@ clusterl.elte.hu
Behaviour
Translation Saved Sessions or
Selection | | user@ clusterl.elte.hu
Colours
-~
=) Connection _ [Load I
Proxy Save
= 55H v
Auth
Tunnels Close window on exit:
Bugs O dlways O MNever (3 Only on clean exit

[Open][Cancel]

Running a Rosetta simulation

Before we begin, we need to know some basic things about Rosetta and how to use it.
Rosetta is freely available to academic users using a licensing agreement that you need to
sign the first time you use Rosetta.

Go to els.comotion.uw.edu/express_license_technologies/rosetta and proceed to the

academic license link. This is a simple online form that is quickly completed.

In the following, we will only include the most basic instructions for performing Rosetta
simulations. For the advanced/interested participants, we have included in BOXES
additional details about the simulations. Appendix 1 at the bottom of this document

includes a detailed description of the different runline commands used with FlexPepDock

(for ease, the commands used in this tutorial are highlighted in bold). Appendix 2 contains

a brief description of different scoring terms specific to the FlexPepDock application.

NOTE: Throughout this tutorial, the input and output files of a run will be located in the
sub-directories input and output, respectively (unless noted otherwise). The command
lines are shown in bold. The commands follows the symbol ‘S’ will represent the terminal

prompt.

BOX 1: Basic features of a Rosetta run

1. Setting up Rosetta: In this workshop, Rosetta has been installed and is ready to use for
you. It is located at /opt/rosetta_bin_linux_2015.38.58158_bundle/. To set up Rosetta on
your own machine, download Rosetta and build it. Detailed instructions on downloading
Rosetta can be found at www.rosettacommons.org/software. Build instructions can be

found at www.rosettacommons.org/docs/latest/build_documentation/Build-Documentation.

2. Any Rosetta run will use

* an executable, $FlexPepDocking.{ext} (here FlexPepDocking.linuxccrelease), located in
the SROSETTA_BIN directory (here /opt/rosetta_bin_linux_2015.38.58158 bundle
/main/source/bin/)

* adatabase (containing e.g. parameters for the scoring function, invoked as -database
SROSETTA_DB (here as
/opt/rosetta_bin_linux_2015.38.58158 bundle/main/database/).

3. The Rosetta command line is composed of two parts:

The executable of the application

A list of options for the particular Rosetta simulation.

Options can be listed with the command. Options, and arguments to the options, are
separated by whitespace. A single or double colon is using to clarify options when there are
multiple separate options with the same name.

SROSETTA_BIN/FlexPepDocking.linuxgccrelease -database SROSETTA_DB -s input/1AWR.ex.pdb
—pep_refine

Options can also be written in a flag file and invoked to the command file using the ‘@’
symbol. To inspect the content of the flags file:

Scat flags

-database SROSETTA_DB
-s input/1AWR.ex.pdb
—pep_refine

SROSETTA_BIN/FlexPepDocking.linuxgccrelease @flags

Depending on the system, you might need to change the parameters to the flags, such as
the input file name and others.

4. Most Rosetta runs will provide as output:

* a scorefile that contains a one-line information about each model (decoy) generated
(usually with file extension .sc)

* one or more output structures (usually with extension .pdb, or in silent format with
extension .silent)

* alog-file that contains information about the performed run.

For more details, see the extensive documentation of the various Rosetta protocols at
www.rosettacommons.org/docs/latest/Home. Queries related Rosetta can be posted to
the Rosetta Forum at www.rosettacommons.org/forum

Now that we are ready, let’s proceed to our simulation.

Location of files for this exercise:
2 Refinement of protein peptide complex using FlexPepDock/
We will use the same input structures as above.

» Go to the tutorial directory

Scd 2_Refinement_of_protein_peptide_complex_using_FlexPepDock/

Running refinement involves several steps. Follow them one-by-one:
1. Create an initial complex structure: A coarse model of the peptide-protein interaction
can be obtained from a low-resolution peptide-protein docking protocol (see below), or

can be built using a homologous structure. As in Section 1, we will here use the bound

receptor - extended peptide conformation (1AWR.ex.pdb). Our aim is to generate a
model similar to the native structure (LAWR.pdb). These input pdb files are located
inside the input/ directory.

Prepack the input model: This step involves the packing of the side-chains in each
monomer to remove internal clashes that are not related to inter-molecular
interactions. The prepacking guarantees a uniform conformational background in non-
interface regions, prior to refinement. The run_prepack script located in the current
directory will run prepacking of the input structure input/1AWR.ex.pdb (this notation
mean the file 1AWR.ex.pdb located inside the input/ directory), using parameters
defined in the prepack_flags file located in the current directory. BOX 2 provides
details about the prepacking command lines listed inside the prepack_flags option list

file.

» Run the run_prepack script

$ bash run_prepack

The output will be:

a prepacked structure, input/1AWR.ex.ppk.pdb
a score file, output/ppk.score.sc
a log file, output/prepack.log file

The prepacked structure is usually very similar to the input starting structure (check it in
Chimera or PyMOL).

BOX 2: The prepacking step command line
The run_prepack file will invoke the following command line:

SROSETTA_BIN/FlexPepDocking.linuxgccrelease -database SROSETTA_DB @prepack_flags
>output/ppk.log

Where the variables ROSETTA_BIN and ROSETTA_DB have been defined as the paths
corresponding to the locations of the executable directory and database directory, respectively.

The prepack_flags is the flag file (See BOX 1) containing a list of options needed to run prepacking.

Scat prepack_flags

-s input/1AWR.ex.pdb
-native input/1AWR.pdb
-ex1

-ex2aro

-use_input_sc

the input peptide-protein complex structure

the ref structure to be used for RMSD calculations

extra rotamers for chi-1 angles utilized during side-chain packing

extra rotamers for aromatic chi-2 angles utilized during side-chain packing

adds the starting structure's rotamers to the rotamer library

#-unboundrot unbound.pdb #add the rotamers of the unbound receptor to the rotamer library

-flexpep_prepack
-nstruct 1

-scorefile ppk.score.sc
-flexpep_score_only
-out:path:pdb input
-out:path:score output

flag for running FlexPepDock prepack

create one pre-packed output structure

name of the scorefile

adds FlexPepDock specific scores to the scorefile
location of the prepacked structure

location of the scorefile

Where —flexpep_prepack is the prepacking specific flag that invokes the prepacking
protocol. The options -ex1 —ex2aro —use_input_sc define the receptor side chain flexibility

in this and the following simulation steps (see Appendix 1 for a description of all the

parameters). The flags —unboundrot adds the rotamers of the unbound receptor to the

rotamer library. It is important to include this flag when you are using unbound receptor.

The flags files for other FlexPepDock protocols will be very similar (see BOXES below).

Running the run_prepack script will generate 1AWR.ex_0001.pdb which will be renamed

to 1AWR.ex.ppk.pdb, and used as input for refinement in the next step. The logs related to

the run will be saved to output/ppk.log.

3. Refine the prepacked model: This is the main part of the simulation. In this step, the

peptide backbone and its rigid-body orientation are optimized relative to the receptor

protein. This is done with iterative Monte-Carlo with Minimization steps that include

periodic on-the-fly side-chain optimization. An optional low-resolution (centroid) pre-

optimization will increase the sampling range and may improve performance further.

The run_refine script located in the current directory will run refinement of the

prepacked structure generated in the prepacking step located in the input directory,

using flags defined in the file refine_flags located in the current directory. BOX 3

provides details about the flags listed inside the refine_flags flags file.

» Run the refinement protocol:
$ bash run_refine

The output will be:

* aprepacked structure, output/1AWR.ex.ppk_0001.pdb
* ascore file, output/refine.score.sc
* alogfile, output/refine.log

To save time, and for educational purposes, we have submitted a run that will generate
one model only. In real life settings you will need to generate a pool of refined models
(200-1000). It is recommended to run such a job either on a cluster or on multiple cores of
a local system. Note that for running on a cluster of many nodes, the run_refine script
needs to be modified (see BOX 3 for more details).

We have performed such a run for you. The input files and the out are located in the

cluster_run/ directory.

BOX 3: The refinement step command line
The run_refine file will invoke the following command line:

SROSETTA_BIN/FlexPepDocking.linuxgccrelease -database = SROSETTA_DB @refine_flags
>output/refine.log

Where refine_flags is the flag file (See BOX 1) containing the list of options needed to run
refinement.

Scat refine_flags

-s input/1AWR.ex.ppk.pdb # the input peptide-protein complex structure

-native input/1AWR.pdb # the ref structure to be used for RMSD calculations

-ex1 # extra rotamers for chi-1 angles utilized during side-chain packing
-ex2aro # extra rotamers for aromatic chi-2 angles utilized during side-chain packing

-use_input_sc # adds the starting structure's rotamers to the rotamer library

#-unboundrot unbound.pdb #add the rotamers of the unbound receptor to the rotamer library

-pep_refine # flag for running FlexPepDock prepack
-lowres_preoptimize # low-resolution optimization before full atom refinement
-nstruct 1 # generates one refined output structure

-scorefile refine.score.sc # name of the scorefile

-flexpep_score_only # adds FlexPepDock specific scores to the scorefile
-out:path:pdb output # location of the prepacked structure
-out:path:score output # location of the scorefile

Where —pep_refine invokes the refinement protocol, and —lowres_preoptimize invokes
low-resolution sampling before full atom refinement. The remaining parameters are
identical to the previous prepack run (see BOX 2 and Appendix 1 for a description of all the
parameters).

The logs related to the run will be saved to output/refine.log file.

In a regular production run, it is advised to run on a cluster of cores. In this case, the
following modifications need to be added to the command line:

-nstruct 1000 # generates 1000 refines structures
-out:file:silent decoys.silent # compresses the output structure into the silent file to save space
-out:file:silent_struct_type binary

For running the parallel job on the cluster you need to use mpirun command. The actual
setup for a parallel run will depend on your cluster. Below is an example of how to run a
parallel job on 10 cores.

mpirun -n 10 SROSETTA_BIN/FlexPepDocking.mpi.linuxgccrelease -database
SROSETTA_DB @refine_flags >output/refine.log

Analysis of the results:

a. The energy landscape sampled by our simulation: In order to obtain a quick intuition
about our simulation, it is advised to plot score vs. rmsd plots to show the energy
landscape (as we looked at in the server run above).

» Use the create_plots.sh script to generate such plots:

Sbash create_plots.sh

This script will extract the parameters relevant to score and RMSD, here total score (also
written as score in older Rosetta versions), interface score (I_sc) and reweighted score
(reweighted_sc; the sum of the total score, the interface score and the peptide score — up
weights contributions by the peptide, and at the interface). It will generate plots of score
vs. peptide backbone interface RMSD (rmsBB_if; calculated after aligning the receptor
structure only).

The output plots are rmsBB_if_vs_score.plot.png, rmsBB_if vs | sc.plot.png and
rmsBB_if vs_reweighted_sc.plot.png.

Compare these plots to the plot provided by the server.

¢+ How accurate are our predictions? Extract the top-scoring models and analyze their
structural features.
The extract_topl0_pdbs.sh script will extract top-scoring decoys according to
reweighted score (reweighted_sc) into the reweighted_sc_top10/ directory. BOX 4
describes how to extract additional models.

» Run extract_top10_pdbs.sh as:

Sbash extract_top10_pdbs.sh refine.score.sc reweighted_sc

BOX 4: Extract specific models for further visual inspection

We have here extracted the top-scoring models according to the scoring term reweighted score.
This term was found to distinguish best near-native models from the rest. Additional terms may
however be used, including interface score (I_sc) and peptide score (pep_sc).

Run the script extract_top_pdbs.sh with an additional parameter to obtain these, e.g.:

Sbash extract_top10_pdbs.sh refine.score.sc |_sc

Here the top ten refined structures will be extracted and put into the I_sc_top10/ directory.

You can also extract additional selected models from the decoys.silent file using the following

command:

SROSETTA_BIN/Sextract_pdbs.{ext} -database SROSETTA_DB -in:file:silent decoys.silent -

in:file:fullatom -in:file:tags decoy_tag

Where the Rosetta executable extract_pdbs is used, and decoy_tag is the tag(s) of the desired

decoy(s) to be extracted, e.g.:

-in:file:tags 1AWR_ex.ppk_0001 1AWR_ex.ppk_0002 1AWR_ex.ppk_0003

¢ Inspect the top-scoring models: how accurate are they? Compare the results to the
server-results discussed in the previous section.

3. Running FlexPepDock ab initio using the command line.

When the peptide conformation is not known, we need to significantly increase the
sampling of the peptide conformation space. This is done using fragments, similar to
Rosetta ab initio protein folding. Here we will demonstrate how a native helical
conformation is identified, starting from an extended peptide, on the example of the
mineral corticoid receptor bound to a peptide from NRCOA-1 (nuclear receptor coactivator

1; PDB id 2A3l).

The files related to this exercise are located in EMBO_FlexPepDock_tutorials/

3_Abinitio_fold and dock of peptides _using flexpepdock/

Follow the following step to run FlexPepDock ab initio locally:

1. Create an initial complex structure: An initial model can be built by placing the peptide in
close proximity to the binding site in an arbitrary conformation. In this demo, we have
provided a starting structure with a peptide in extended conformation (2A3l.ex.pdb). Our

goal is to optimize this structure using ab-initio FlexPepDock, towards a near-native model

with a helical peptide conformation. Both the native structures (2A3l.pdb), as well as the

starting structure (2A3l.ex.pdb) are provided in the input/ directory.

2. Prepack the input model: Run prepacking as in the refinement tutorial above.

$ bash run_prepack

This will prepack the input structure 2A3l.ex.pdb located in the input directory. The output

will be:

* aprepacked structure, input/2A3l.ex.ppk.pdb
* ascore file, output/ppk.score.sc
* alog file, output/prepack.log

3. Create fragment libraries (3mer, S5mer & 9mer (peptide length >=9): The scripts
necessary for creating fragments are provided in the fragment_picking directory. We
will provide the fragment files for this run in the input directory. See BOX 5 for details for

running this on your own.

BOX 5: Generating fragment files

Follow the steps below to generate the fragments:

A. Gotothe fragment picking directory.

B. Save the peptide sequence in the xxxxx.fasta file.

C. Run the make_fragments.pl script to generate the PSIPred secondary structure and
PSI-Blast sequence profiles. You need to change the paths in the upper section of the
make_fragments.pl file (here we have done it for you).

» Runas

Sperl make_fragments.pl -verbose -id xxxxx xxxxx.fasta

This will create xxxxx.psipred_ss2, xxxxx.checkpoint, along with other files.

D. Run the executable fragment_picker.linuxgccrelease to create the fragments. The flags
are provided in the flags file and the fragment scoring weights are provided in the

psi_L1.cfg file.

> Run as

SROSETTA_BIN/fragment_picker.linuxgccrelease -database SROSETTA_DB @flags >log

E. Change the fragment numbering using the shift.sh script, and move the fragments to
the input directory for the ab initio run:
» Runas

Sbash shift.sh frags.500.3mer X >frags.3mers.offset

where X is the number of residues in the receptor. Repeat this for 5mer and 9mer
fragments.

» Move the offset fragment files to the input/frags directory.

4. Ab-initio folding and docking of the prepacked model: This is the main part of the ab
initio FlexPepDock protocol. In this step, the peptide backbone and its rigid-body
orientation are optimized relative to the receptor protein using the Monte-Carlo with
Minimization approach, including periodic on-the-fly side-chain optimization. The peptide
backbone conformational space is extensively sampled using fragments derived from
solved structures. The file abinitio_flags contains flags for running the ab-initio job. The
run_abinitio script will run ab-initio modeling of the prepacked structure generated in the
prepacking step located in the input directory. BOX 6 provides details about the flags listed

inside the abinitio_flags flags file.

» Run the run_abinitio script as:

$ bash run_abinitio

The output will be:

* aprepacked structure, output/2A3l.ex.ppk_0001.pdb
* ascore file, output/abinitio.score.sc
* alog file, output/abinitio.log

This script has to be modified to run on a cluster during a production run (see below).

BOX 6: The ab initio step command line
The run_abinitio file will invoke the following command line:

SROSETTA_BIN/FlexPepDocking.linuxgccrelease -database @ SROSETTA_DB @abinitio_flags
>output/abinitio.log

Where abinitio_flags is the flag file (See BOX 1) containing list of options needed to run ab initio
docking. The logs related to the run will be saved to output/abinitio.log.

The following flags are identical to definitions in the refinement run (See BOX 3 above for details):
-s input/2A3l.ex.ppk.pdb -native input/2A3l.pdb —ex1 -ex2aro -use_input_sc -nstruct 1 -
scorefile abinitio.score.sc —pep_refine -flexpep_score_only -out:path:pdb output -
out:path:score output

The additional ab initio protocol specific flags are listed below (See Appendix 1 for a full list and
details of runline parameters)

-lowres_abinitio # flag for running FlexPepDock prepack

-frag3 input/frags/frags.3mers.offset # 3mer / Smer / 9mer fragments files for ab-initio sampling
-flexPepDocking:frag5 input/frags/frags.5mers.offset

-frag9 input/frags/frags.9mers.offset

-flexPepDocking:fragh_weight 0.25 # setting weight for the different frags (3mers weights is 1.0)
-flexPepDocking:frag9_weight 0.1

—lowres_abinitio invokes the low resolution peptide fold and dock protocol, and the remaining
flags are required to read various fragments files and set the relative weights of these fragments.
Note that we invoke the —pep_refine flag (as in the refinement run), so that the folded and docked
models are further refined using the refinement protocol.

As for refinement, in a regular production run we will use a cluster of cores. In this case, the
following modifications need to be added to the command line:

-nstruct 50000 # generates 50000 structures
-out:file:silent decoys.silent # compresses the output structure into the silent file to save space
-out:file:silent_struct_type binary

See BOX 4 for instructions to extract pdb files from this silent file, and BOX 3 for how to use MPI for
parallel running on a cluster.

In our script, we have generated one model only. In real life examples you will need to
generate a large pool of refined decoys (1000-50000). We have provided the results for a
cluster run of an ab initio job, which generated 5000 decoys. The input and output files are

located in the cluster run/ directory.

Before we proceed to look at our results, it is recommended to cluster the models to

maximize diversity of the final model set, and to estimate the size of the local energy basin.

5. Cluster the top-scoring decoys using the Rosetta clustering application: To maximize the
diversity of the final models, and to estimate the size of the local energy basin, we suggest
clustering the results, using the Rosetta clustering application. We recommend to cluster
the top-1% models (either based on reweighted score, or interface score) and to choose
the clusters with lowest-energy representatives. We have found that a clustering radius of
2.0 A (peptide CA atoms only) provides a diverse and representative set of conformations,
among which good solutions are often found within the top 1-10 clusters (Note that in our
script, the RMSD values have been modified to reflect RMSD of the whole complex as the
clustering is performed on the whole complex and in that context the clustering radius will
change).

A clustering script is provided in the clustering directory. It will cluster the top 500

decoys based on a cutoff radius of 2.0 Angstrom, and select for each the top-scoring

member (according to reweighted score, reweighted_sc). A top scoring member from each
cluster is reported in the file cluster_list_reweighted_sc_sorted.
For detailed clustering command line options and parameter setting please visit

https://www.rosettacommons.org/docs/latest/application_documentation/utilities/cluster.

» Go to the clustering directory and run the clustering script.
Scd clustering

Sbash cluster.sh 2.0 ../input/2A3l.pdb ../output/decoys.silent

¢ Inspect the score vs. rmsd plot.

o How does the energy landscape look like? Can you identify an energy funnel
around the native conformation? Are we sampling enough, or should we sample
more?

o How much has the range of sampled conformations changes compared to a
refinement run (compare the results to the refinement run; pay attention to the
x-axis RMSD)

o Locate the model with the best energy on this plot. What RMSD to the native
structure does it show? Is this an accurate prediction?

¢ Inspect the top-scoring cluster representatives using Chimera or PyMOL (your choice):
load the native structure, the starting structure, and the top-10 models. Are critical

features of the interaction recovered?

X/
°e

For demonstration purposes, we have used here a starting structure in extended
conformation, positioned in the binding site using one anchor residue. Suggest other
ways to generate starting structures. How would the simulation be affected by the

differences in the starting conformation?

4. Running FlexPepBind on Histone Deacetylase 8 (HDACS8)

Predicting the structure of a peptide-protein interaction (and an interaction in general) does
not guarantee that the peptide indeed binds to the receptor. However, an accurate model of
a peptide-protein interaction can be used to evaluate the binding ability of a given peptide
sequence to a given receptor, e.g. relative to other peptides. We have found that this works
particularly well when the characteristic binding features of interactions are defined and
reinforced during modeling: sequences for which low-energy models can be generated that

fulfill these constraints are assumed to be binders.

We have developed FlexPepBind - a protocol that uses the FlexPepDock framework to model
the structure of a range of different peptide-receptor complexes and identifies binders / non-

binders.

This demo illustrates how to run the FlexPepBind protocol to predict peptide binding for two
systems: (1) substrates that are deacetylated by Histone Deacetylase 8 (HDAC8)*, and (2)
substrates that are farnesylated (a farnesyl moiety is attached to their c-terminus) by Farnesyl

Transferase (FTase)’.

Protocol overview: The FlexPepBind protocol predicts peptide binding by modeling different

peptide sequences onto a template peptide-receptor complex. Below are the different stages

of developing FlexPepBind protocol for a specific biological system:

1. Find structure of the receptor of interest in complex with a peptide. Go to the protein
data bank webpage www.rcsb.org/pdb/home/home.do and search for your protein.

2. Gather a dataset of peptide which know binding affinity toward the receptor; a mixed set
of binders or non-binders; or substrates or non-substrates. It is important that critical
interactions need to be constrained by using Rosetta constraints. Below we show example

constraints invoked during running FlexPepBind on the HDACS8 system.

AtomPair OD2 253 OH 366 HARMONIC 2.8 0.2 t#tconstrain the distance between of
atom OD2 of the residue number 253 to atom OH of the residue number 366 to a distance of 2.8 A
and use a harmonic potential to penalize if the distance changes.

3. Use the optimized protocol on unknown set of peptides.

System-specific calibration: Depending on the system, either simple minimization (of the full
peptide conformation and rigid body orientation, and the receptor side chains) or extensive
optimization using the FlexPepDock refinement protocol might be needed. Also, the optimal
measure to rank the different peptides has to be determined (i.e., a score that highlights the

interface energy; see below).

In this demo we show how to use the minimization only protocol to predict binders and

non-binders in a set of peptide sequences.

The files related to the FlexPepBind tutorial are located in the

6_peptide_specificity_using_FlexPepBind/ directory.

» To run on the specific systems provided here, go to the relevant directory, and run the

fpbind_run.sh script (located in the scripts directory).

S cd HDACS8/
$ bash ../scripts/fpbind_run.sh

This will minimize, for each peptide in a list (input_files/peptide.list), the peptide-protein
complex generated by threading the peptide sequence onto the template.
We will use a constraint file that tethers the acetylated lysine into the binding pocket, as

described in Figure 2 below.

AtomPair
AtomPair
AtomPair
AtomPair
AtomPair
AtomPair
AtomPair
AtomPair
AtomPair
AtomPair
AtomPair
AtomPair
AtomPair
Dihedral

OD2 253 OH 366 HARMONIC 2
OD2 164 OH 366 HARMONIC 3
NE2 129 NZ 366 HARMONIC 4
ND1 166 OH 366 HARMONIC 3
OoD2 87 N 366 HARMONIC 3
oDl 87 N 366 HARMONIC 3
CE1 194 CG 366 HARMONIC 4.
CE1 138 CD 366 HARMONIC 3.
OD2 162 ND1 128 HARMONIC 2
OD2 169 ND1 129 HARMONIC 2
0] 137 NZ 366 HARMONIC 3
CZ 292 OH 366 HARMONIC 3
OD2 164 OH 366 HARMONIC 3.
N 366 CA 366 C 366 N 367

8 0.2
7 0.2
8 0.2
3 0.2
2 0.2
0 0.2
0 0.2
4 0.2
5 0.2
8 0.2
0 0.2
7 0.2
7 0.2
CIRCU

IRCULARHARMONIC -46.9 5.0

Figure 2: Constraints imposed in optimization run

» Analyze the data: run fpbind_analysis.sh (located in the scripts directory). It will extract
the relevant scores of the minimized structures & save them in the score_analysis/
directory.

$ bash ../scripts/fpbind_analysis.sh

Scores currently considered are:

1. Interface score - the energy contributed at the interface (I_sc)

2. peptide score - the energy contributed by the internal energy of the peptide + the
interface score (pep_sc)

3. peptide score without reference energy - the same peptide score, but without the amino
acid dependent energy terms (Eaa) that were optimized to generate designs with natural
amino acid content (pep_sc_noref, we found that removing this term can significantly
improve distinction of substrates from non-substrates in certain systems)

4. Reweighted score: = sum (total_score + peptide_score + interface score) (reweighted_sc)
The output contains a list of scores, e.g. score_analysis/l_sc

S paste input_files/peptide.list score_analysis/I_sc
GYKFGC -16.7

GFKWGC -17.5 Substrates
Low scores

GFKFGC -16.4

GMKDGC -13.9
Non-substrates

GDKDGC -13.2 High scores

GQOKIGC -13.4

The above lines show the interface scores for 6 peptides (the top 3 are HDAC8 substrates &

the bottom 3 are not HDACS8 substrates).

¢ Inspect the scores of the substrates and the non-substrates; How do the energies look
like? Can you discriminate between the substrates and the non substrates based on
score?

% Open the best-scoring and the worst-scoring models in Chimera (located in
XXXXXX/XXXXXXstart.ppk_0001.pdb, where XXXXXX is the peptide sequence, upper
case letters). Can you explain the difference between substrate and non-substrate?

%+ Choose a different system and discuss how you would implement FlexPepBind for that

system.

Appendix 1: Runline options for FlexPepDock simulations

Parameters used in this tutorial are highlighted in bold.

(A) Common FlexPepDock flags

Flag
-receptor_chain
-peptide chain

-lowres_abinitio
-pep_refine

-lowres_preoptimize

-flexpep_prepack

-flexpep_score_only

-flexPepDockingMinimizeOnly

-ref_ startstruct

-peptide anchor

Description

Chain id of receptor protein

Chain id of peptide protein
Low-resolution ab-initio folding and

Default
first chain
second chain

docking mode false
Refinement mode false
Perform a preliminary round of centroid

S . false
mode optimization before Refinement
Prepacking mode. Optimize the side-
chains of each monomer separately (no false
docking)
Read in a complex, score it and output false
interface statistics
Minimization mode: Perform only a short false
minimization of the input complex
Alternative start structure for scoring
statistics (useful as reference for rescoring N/A
previous runs with the -flexpep_score_only
flag.)
Set the peptide anchor residue manually. S
Only recommended if one strongly suspects near.est to the
the critical region for peptide binding to be ST
remote from its center of mass. :s:stser Ui

(B) Relevant Common Rosetta flags

Flag
-in::file::s
-in:file:silent

Description

Specify starting structure (PDB or silent format,

respectively)

in::file::silent struct type
out::file::silent struct_ typ
e

-native

-nstruct

-unboundrot

Format of silent file to be read in/out. For silent output,
use the binary file type since other types may not
support ideal form

Models can be extracted using extract_pdbs.

Specify the native structure for which to compare in
RMSD calculations. When the native is not given, the
starting structure is used as reference.

Number of models to create in the simulation

Add the position-specific rotamers of the specified
structure to the rotamer library (usually used to

include rotamers of unbound receptor)
Include rotamer conformations from the input
structure during side-chain repacking. Unlike the -
unboundrot flag, not all rotamers from the input
-use_input_sc structure are added each time to the rotamer
library, only those conformations accepted at the
end of each round are kept and the remaining
conformations are lost.
Adding extra side-chain rotamers (highly

-exl/-exl -ex2/-ex2 -
exl/-exlaro -ex2/-ex2aro recommended). The -ex1 and -ex2aro flags are

ex3 -exd recommended as default values.
-database The Rosetta database
-frag3 3mer / 5mer / 9mer fragments files for ab-initio
-flexPepDocking: frag5 peptide docking (9mer fragments for peptides
-frag9 longer than 9).
(C) Expert flags
Flag Description Default
The number of outer cycles for the protocol. In each cycle,
the repulsive energy of Rosetta is gradually ramped up
-rep ramp cycles and the attractive energy is ramped down, before inner- 10
cycles of Monte-Carlo with Minimization (MCM) are
applied.

—mem cveles Number of inner-cycles for both rigid-body and torsion-
—cY angle Monte-Carlo with Minimization (MCM) procedures

Defines the perturbation size of small/sheer moves 6.0
smove angle range

Start the protocol with the peptide in extended
-extend peptide conformation (neglect original peptide conformation; false
extend from the anchor residue)
Relative weight of different fragment libraries in ab-initio | 1.0 / 0.25

-f 3/5/9 ight
rag —veid fragment insertion cycles /0.1

Appendix II: Description of the various scoring and quality assessment measures

total_score * Total score of the complex
Reweighted score of the complex, in which interface residues are given

reweighted_sc double weight, and peptide residues are given triple weight

[bsa Buried surface area of the interface

[_hb Number of hydrogen bonds across the interface

[_pack Packing statistics of the interface

I sc Interface score (sum over energy contributed by interface residues
- of both partners)

Peptide score (sum over energy contributed by the peptide to the

ep_sc . . .
pep- total score; consists of the internal peptide energy and the

interface energy)
Peptide score without an amino acid dependent reference energy term

pep_sc_noref E.a, originally introduced to bias for natural protein sequences during
protein design
[unsat Number of buried unsatisfied HB donors and acceptors at the interface.

RMSD between output model and the native structure, over all peptide
(heavy/backbone/C-alpha) atoms

RMSD between output model and the native structure, over all
peptide interface (heavy/backbone/C-alpha) atoms

RMSD between start and native structures, over all peptide
(heavy/backbone/C-alpha) atoms

For the common Rosetta scoring terms, please also see

rms (ALL/BB/CA)
rms (ALL/BB/CA)_if

startRMS(all/bb/ca)

www.rosettacommons.org/docs/latest/rosetta_basics/scoring/score-types.

" For all interface terms, the interface residues are defined as those whose C-beta atoms (C-alpha for Glycines)

are up to 8A away from any corresponding atom in the partner protein.

References

1. Raveh, B., London, N., and Schueler-Furman, O. (2010) Sub-angstrom modeling of complexes between
flexible peptides and globular proteins, Proteins 78, 2029-2040.

2. Raveh, B., London, N., Zimmerman, L., and Schueler-Furman, O. (2011) Rosetta FlexPepDock ab-initio:
simultaneous folding, docking and refinement of peptides onto their receptors, PLoS One 6, €18934.

3. Lavi, A., Ngan, C. H., Movshovitz-Attias, D., Bohnuud, T., Yueh, C., Beglov, D., Schueler-Furman, O., and

Kozakov, D. (2013) Detection of peptide-binding sites on protein surfaces: the first step toward the

modeling and targeting of peptide-mediated interactions, Proteins 81, 2096-2105.

4, Alam, N., Zimmerman, L., Wolfson, N. A., Joseph, C. G., Fierke, C. A., and Schueler-Furman, O. (2016)

Structure-Based Identification of HDACS8 Non-histone Substrates, Structure 24, 458-468.

5. London, N., Lamphear, C. L., Hougland, J. L., Fierke, C. A., and Schueler-Furman, 0. (2011)
Identification of a novel class of farnesylation targets by structure-based modeling of binding
specificity, PLoS Comput Biol 7, e1002170.

6. Kozakov, D., Grove, L. E., Hall, D. R., Bohnuud, T., Mottarella, S. E., Luo, L., Xia, B., Beglov, D., and

Vajda, S. (2015) The FTMap family of web servers for determining and characterizing ligand-binding

hot spots of proteins, Nat Protoc 10, 733-755.

