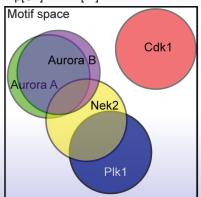
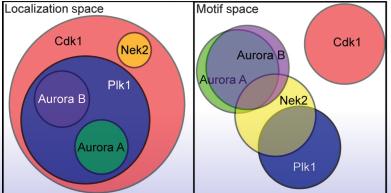


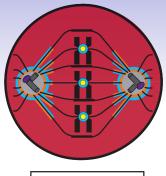
Tools & Databases of Short Linear Motifs


Holger Dinkel
EMBO Practical Course:
"Computational Analysis of Protein-Protein Interactions:
Sequences, Networks and Diseases"
Budapest, 03, 06, 2016

[&]quot;Spatial exclusivity combined with positive and negative selection of phosphorylation motifs is the basis for context-dependent mitotic signaling"; ALEXANDERETAL.; (SCI. SIG 2011)


Kinase	-3	-2	-1	0	1	2	3
Cdk1				p[ST]	Р		[KR]
Plk1		[DEN]		p[ST]	[ILMVFWY]		
Nek2	[FML]	[!P]	[!P]	p[ST]	[ILMV]		
AuroraA	R	[KR]		p[ST]	[!P]		
AuroraB		R	[KR]	p[ST]	[!P]		

Kinase	-3	-2	-1	0	1	2	3
Cdk1				p[ST]	Р		[KR]
Plk1		[DEN]		p[ST]	[ILMVFWY]		
Nek2	[FML]	[!P]	[!P]	p[ST]	[ILMV]		
AuroraA	R	[KR]		p[ST]	[!P]		
AuroraB		R	[KR]	p[ST]	[!P]		



[&]quot;Spatial exclusivity combined with positive and negative selection of phosphorylation motifs is the basis for context-dependent mitotic signaling"; ALEXANDERET AL.; (SCI. SIG 2011)

Kinase	-3	-2	-1	0	1	2	3
Cdk1				p[ST]	Р		[KR]
Plk1		[DEN]		p[ST]	[ILMVFWY]		
Nek2	[FML]	[!P]	[!P]	p[ST]	[ILMV]		
AuroraA	R	[KR]		p[ST]	[!P]		
AuroraB		R	[KR]	p[ST]	[!P]		

"Spatial exclusivity combined with positive and negative selection of phosphorylation motifs is the basis for context-dependent mitotic signaling"; ALEXANDER ET AL.; (SCI. SIG 2011)

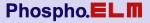
Kinase localization in Metaphase:

Cdk1 whole cell

Plk1 kinetochores

Aurora A centrosomes & microtubules

centromeres & spindle


Nek2 centrosomes

Phospho.ELM

Database of experimentally verified phosphorylation sites in eukaryotic proteins.

Current release contains 8,718 protein entries covering more than 42,500 instances. (Instances are fully linked to literature references.)

Statistics:

42,575 310 Kinases Reference 3 672 Sequences 11 223 Substrates 8.718

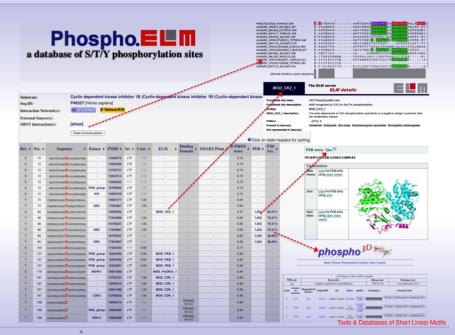
Home PhosphoBlast Contribute Download Help Links About

p53 (Cellular tumor antigen p53) Substrate: P04637 [Homo sapiens]

STRING ■ NetworKIN Interaction Network(s):

External Source(s): PHOSIDA MINT Interaction(s): [show]

GO-Terms: [show]


Conservation:

Seq-ID:

Click on table headers for sorting

Res. •	Pos. o	Sequence •	Kinase ¢	PMID •	Src +	Cons. •	ELM ¢	Domain *	SMART/Pfam •	score	PDB ¢	Acc. •
S	9	MEEPQSDPSVEPPLSQETF	-	11875057	LTP	0.75		-	P53_TAD	0.94	-	
s	15	QSDPSVEPPLSQETFSDLWKL	DNA-PK	10446957	LTP	1.00	MOD_PIKK_1		P53_TAD	0.66		
S	15	QSDPSVEPPLSQETFSDLWKL	ATM	11875057	LTP	1.00	MOD_PIKK_1	-	P53_TAD	0.66	-	-
Т	18	psvepplsqe T fsdlwkllpe	CK1_group	10606744	LTP	1.00	MOD_CK1_1		P53_TAD	0.66	-	
Т	18	PSVEPPLSQE T FSDLWKLLPE	TTK	19332559	LTP	1.00	MOD_CK1_1		P53_TAD	0.66		
Т	18	psvepplsqe T $psdlwkllpe$	VRK1	10951572	LTP	1.00	MOD_CK1_1	-	P53_TAD	0.66	-	-
Т	18	PSVEPPLSQETFSDLWKLLPE	VRK1	15542844	LTP	1.00	MOD_CK1_1		P53_TAD	0.66		
S	20	VEPPLSQETFSDLWKLLPENN		15254178	LTP	0.95			P53_TAD	0.58		
S	20	VEPPLSQETFSDLWKLLPENN	-	15489221	LTP	0.95		-	P53_TAD	0.58	-	-
S	20	VEPPLSQETFSDLWKLLPENN	-	10801407	LTP	0.95			P53_TAD	0.58		
s	20	VEPPLSQETPSDLWKLLPENN	-	12111733	LTP	0.95			P53_TAD	0.58		-

Links to:

- STRING
- NetworKin
- Phosida
- Phospho3D

Display:

MINT interactions

Α

GO-Terms

Substrate:

Seq-ID:

Interaction Network(s):

External Source(s):

MINT Interaction(s):

GO-Terms:

Caspase 9 (Cysteine protease)

P55211 [Homo sapiens]

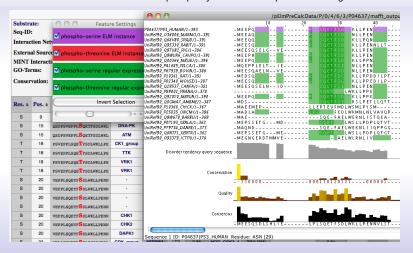
STRING ■NetworKIN

PHOSIDA

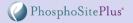
[hide] MINT-15372 APAF_HUMAN

MINT-18815 CASP3_HUMAN MINT-25026 XIAP_HUMAN [hide]

illuc]


Molecular Function

cysteine-type endopeptidase activity, protein binding,


enzyme activator activity

Precalculated conservation scores for the phosphorylation sites are presented using Jalview

PHOSPHOSITEPIUS

Protein Name: ▼ 053 SEARCH

Protein, Sequence, or Reference Search Site Search

Comparative Site Search

Browse MS2 Data By Disease

Browse MS2 Data by Cell Line

Browse MS2 Data by Tissue

DOWNLOADS, LINKS & APPLICATIONS

Reprints, References, Supplemental Tables

Downloadable Datasets

Motif Analysis Tools

window.

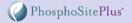
Aug 2014 Download PTM-VarMut dataset: Overlap of disease missense mutations & genetic variants, with their corresponding PTMs and flanking sequences.

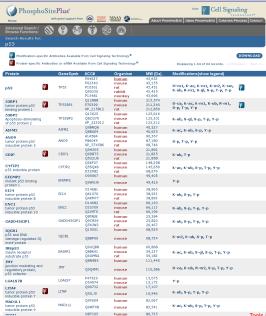
Jul 2012 Download Datasets of Regulatory or Disease-Associated Sites. Dec 2011 Download "PhosphoSitePlus: a comprehensive resource..." in January 2012 Issue of Nucleic Acids Research.

Jul 2011 Multiple Sequence Alignment (MSA) added to the Protein Page. Jul 2011 Download PvMOL & Chimera Scripts from the Structure Viewer

Phosphorylation Site Statistics

Non-redundant sites:	239,738
Non-redundant proteins:	19,680
Sites curated from literature:	136,109
All sites using site-specific (SS) methods:	12,528
All sites using discovery-mode MS (MS) methods:	127,064
Sites using both SS and MS methods:	6,010
MS sites observed at CST:	151,472
Number of curated papers:	16,428


Other Modification Site Statistics


Acetylation:	27,657	Caspase cleavage:	481
Di-methylation:	2,555	Methylation:	163
Mono-methylation:	4,992	O-GalNAc:	2,118
O-GlcNAc:	1,390	Succinylation:	4,657
Sumoylation:	816	Tri-methylation:	321
Ubiquitination:	51,255		

PhosphoSite, created by Cell Signaling Technology is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. Information about permissions beyond the scope of this license are available at http://www.phosphosite.org/staticContact.do.

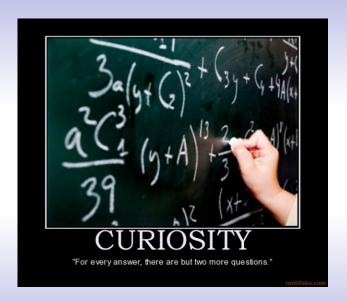

Produced by 3rd Millennium | | Design by Digizyme

70 680

PHOSPHOSITEPLUS

Protein type: DNA binding protein; Nuclear receptor co-regulator; Motility/polarity/chemotaxis; Transcription factor; Activator protein; Tumor suppressor

Cellular Component: PML body; transcription factor TFIID complex; protein complex; nuclear matrix; mitochondrion; endoplasmic retulum; replication fork; cytosoi, nucleoplasm; nuclear body; mitochondrial matrix; cytoplasm; nuclear chromatin; nucleous; chromatin; nucleous


Nelecular Function: identical protein binding; protease binding; zinc ion binding; protein phosphatase 2A binding; p.53 binding; protein. Netermize bilding; receptor byrosine kinase binding; internerption factor binding; protein phosphatase binding; protein kinase binding; histone exceptremetrase binding; protein binding; coper ion binding; histone desceptives regulator activity; evaryue binding; QNA binding; protein heterodimerization activity; chaperone binding; ubiquitin protein ligase binding; damaged DNA binding; chromatin binding; transcription factor activity: AP binding.

Biological Process: central nervous system development: viral reproduction; positive regulation of apoptosis; multicellular organismal development; positive regulation of transcription, DNA-dependent; T cell differentiation in the thymus; gastrulation; determination of adult life span; DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest; response to antibiotic; regulation of apoptosis; cellular response to glucose starvation; protein localization; negative regulation of neuroblast proliferation; base-excision repair; transforming growth factor beta receptor signaling pathway; protein complex assembly; cell cycle arrest; ER overload response; response to X-ray; somitogenesis; release of cytochrome c from mitochondria; chromatin assembly; cell aging; rRNA transcription; positive regulation of peptidyl-tyrosine phosphorylation; negative regulation of DNA replication; negative regulation of fibrobiast proliferation; embryonic organ development; positive regulation of transcription from RNA polymerase II promoter; regulation of mitochondrial membrane permeability; negative regulation of transcription, DNA-dependent; regulation of tissue remodeling; negative regulation of apoptosis; GI DNA damage checkpoint; DNA damage response, signal transduction by p53 class mediator; apoptosis; negative regulation of transcription from RNA polymerase II promoter; response to salt stress; negative regulation of cell proliferation; positive regulation of protein oligomerization; positive regulation of histone deacetylation; DNA damage response. signal transduction by p53 class mediator resulting in transcription of p21 class mediator; regulation of transcription, DNA-dependent; T cell proliferation during immune response; double-strand break repair; positive regulation of neuron apoptosis; response to gamma radiation; cell differentiation; DNA damage response, signal transduction by p53 class mediator resulting in induction of apoptosis; protein tetramerization; Notch signaling pathway; in utero embryonic development; multicellular organism growth; B cell lineage commitment; cell proliferation; neuron apoptosis; T cell lineage commitment; negative regulation of helicase activity; nucleotideexcision repair; protein import into nucleus, translocation; DNA strand renaturation; Ras protein signal transduction; negative regulation of cell growth; negative regulation of transforming growth factor beta receptor signaling pathway; blood coagulation; response to DNA damage stimulus

PHOSPHOSITEPLUS

ov t	4ultipl	e Sequence Al	lianment								
5	MS	,	human		mouse ▼ Show Isoforms		rat		rabbit		monkey
	0	24	MEEPQsDPsVE	S4-p	MEEsQsDIsLE	S4-p	MEDSQSDMsIE	54	MEESOSDLSLE	P4	HEEPQSD
1	4	S 6 - p	_REEPQaDPaVEPP	S6-p	_NEEsQsDIsLELP	S6-p	NED=Q=DH=TELP	S 6	_REESQSDLSLEPP	S 6	HEE PQSDPS
4	3	S9-p	EEPQ×DP×VEPPL×Q 🏢	S9-p	EE=QsDI*LELFL*Q	S9-p	ED=Q=DH=IELPL=Q	59	EESQSDLSLEPPLSQ	59	EEPQSDPSIEP
8	2	S15-p	PsVEPPLsQEtFsDL 🃜	S15-p	IsLELPLsQEtFsGL 🎆	S15-p	MsIELPLsQEtFscL 🍱	515	LSLEPPLSQETFSDL	S15-p	PSIEPPL#QET
8	0	T18-p	EPPLsQEtFsDLWKL 🏢	Т18-р	ELPLsQEtPsGLWKL	718-р	ELPLsQEtFsCLWKL	T18	EPPLSQETFSDLWKL	T18	EPPLsQETFSI
0	1	S20-p	PL:QEtF:DLWKLLF	S20-p	PL=QEtF=GLWKLLP	S20-p	PL=QEtF=CLWKLLP	520	PLSQETFSDLWKLLP	520	PL#QETFSDL
0	3	533-p	LPENHVLSPLPSQAK 🏢	P33	LPPEDILPSPHCHDD	P33	LPPDDILPTTATGSP	T33	LPENNLLTISLHPPV	533-p	LPEROVVLEPL
5	3	S37-p	NVLsPLPsQAMDDLH 🏢	S34-p	PPEDILPSPHCMDDL	S39-p	LPTTRTG=PHSHEDL	Н37	NLLTTSLNPPVDDLL	537	NVLsPLPSQA
5	2	S46-p	AMDDLHL #PDDIEQV	L43	HCNDDLLLPQDVEEF	L48	HSHEDLFLPQDVAEL	\$45	PPVDDLLSAEDVANW	\$46	AVDDLHLSPDI
5	0	Т55-р	DDIEGWFEDPGPDE	-	gap	-	gap	H54	EDVANWLNED PEEGL	155	DDL RQWL TED
	0	D61	FtEDPGPDEAPRNPE	S55-p	EEFFEGPSEALRVSG	E60	AELLEGPEE ALOVS A	E58	NWLNEDPEEGLRVPA	D61	LTEDPGPDEA
	2	T81-p	арараарсраарара 🏢	675	DPVTETPGPVAPAPA	A79	EPGTEAPAPVAPASA	278	APAPAAPALAAPAPA	T81	APTPARPTPA
	2	S99-p	PLSSSVP#QkTYQG#	593	PLSSFYPSQKTYQGN	597	PLSSSVPSQKTYQGH	596	PLSSSVPSQKTYHGH	599	PLSSSVPSQK
	2	K101-ub	SSSVPsQkTYQGsYG	K95	SSEVESORTYGGHYG	K99	SSSVPSQKTYQGHYG	K98	SSSVPSQKTYHGNYG	K101	SSSVPSOKTY
	0	S106-p	sQkTYQGsYGFxLGF	N100	SQKTYQGHYGFHLGP	N104	SQKTYQGNYGPHLGF	H103	SQKTYHGNYGFRLGF	S106	SQKTYHGSYG
	1	R110-m1	YQG#YGF#LGFLhSG	H104	YQGHYGPHLGFLQSG	H108	Adenachitertore	R107	YHGNYGFRLGFLHSG	R110	YHGSYGFRLG
	1	H115-m1	GFILGFLASGTARSV	0109	GFHLGFLQSGTARSY	0113	GFHLGFLQSGTARSV	Н112	GPRLGFLMSGTAKSV	H115	GFRLGFLHSG
3	1	K120-ac	FLASGTARSVICTYS	K114-ac	FLOSGTARSVHCTYS	K118-ac	FLOSGTAKSVNCTYS	K117	FLHSGTAKSVTCTYS	K120	PLHSGTAKSV
	19	K120-ub	FLASGTRASVICTYS	K114	FLOSGTAKSVECTYS	K118	FLOSGTAKSVNCTYS	K117	FLHSGTAKSVTCTYS	K120	FLHSGTRKSV
	0	Y126-p	ARSVICTYSPALNRE	Y120	ARSVECTYSPPLEEL	¥124	AKSVNCTYSISLNKL	Y123	RESUTCTYSPICLNEL	Y126	AKSVICTYSP
	1	K132-ub	TySPALNKHFCQLAK	K126	TYSPPLNKLFCQLAK	K130	TYSISLHKLECQLAK	K129	TYSPCLNKLFCQLAK	K132	TYSPDLNKME
	0	K139-ub	MFCQLARTCPVQLW	K133	KLFCQLAKTCFVQLW	K137	KLFCQLAKTCFVQLW	K136	KLFCQLAKTCPVQLW	K139	KMFCQLAKTC
	1	S149-p	PVQLWVD::tPPFGtR	2143	PVQLWVSATPPAGER	5147	PVQLWVISTPPPGTR	5146	PVQLWVDSTPPPGTR	5149	PVQLNVDSTP
	1	S149-g1	PVQLWVDstPPFGtR	R143	PVQLWVSATPPAGeR	S147	PVQLWVISTPPPGTR	S146	PVQLWVDSTPPPGTR	5149	PVQLWVDSTP
	8	Т150-р	VQLWVDstPPPGtRV	T144	VQLWVSATPPAGaRV	7148	VQLWVTSTPPPGTRV	T147	VQLWVDSTPPPGTRV	T150	VQLWVDSTPP
	1	T155-p	Datpppgtryranai	S149-p	SATPPAGERVRAMAI	T153	ISTPPPGTRVRAHAI	T152	DSTPPPGTRVRANAI	\$155	DSTPPPGSRV
	1	K164-ac	VRANATYROSOMMTE	K158	VRANALYKKSQNHTE	K162	VRAHATYKKSQIOHTE	K161	VRANALYKKSOHNTE	K164	VRANATYKOS
	1	K164-ub	VRANATYROSOHNTE	K158	VRAHATYKKSOHHTE	K162	VRAHATYKKSOHKTE	K161	VRANATYKKSOHNTE	K164	VRANATYKOS
	0	S183-p	CPHHERCEDSDGLAP	\$177	CPHHERCSDGDGLAP	S181	CPHHERCSDGDGLAP	S180	CPHHERCSDSDGLAP	\$183	CPHHERCSDS
	1	R209-m1	RVEYLDDENtFrHsV	R203	YPEYLEDROTERHSY	R207	YAEYLDDRQTFRHSV	R206	RREYLDDRHTFRHSV	R209	RVEYSDDRNT
	0	T211-p	EYLDDrNtFrHsVVV	T205	EXLEDROTFRHSVVV	T209	EYLDDROTFRHSVVV	T208	EYLDDRNTFRHSVVV	1211	EYSDDRNTFR
	1		LDDrHtFrHsVVVPy	R207	LEDROTFRHSVVVPY	R211	LDDRQTFRHSVVVFY	R210	LDDRNTFRHSVVVPY	R213	SDDRHTFRHS
	0	5215-p	DENTFERNVVVPyEP	5209	DROTFRHSVVVPYEP	5213	DRQTFRHSVVVPXEP	5212	DRHTFRHSVVVPYEP	5215	DRNTFRHSVV
		or ro-h								0.223	

Tools & Databases of Short Linear Motifs

The Eukaryotic Linear Motif resource for Functional Sites in Proteins

is a collection of more than 240 thoroughly annotated motif classes with over 2700 annotated instances.

It is also a prediction tool to detect these motifs in protein sequences employing different filters to distinguish between functional and non-functional motif instances.

The Eukaryotic Linear Motif resource for Functional Sites in Proteins

is a collection of more than 240 thoroughly annotated motif classes with over 2700 annotated instances.

It is also a prediction tool to detect these motifs in protein sequences employing different filters to distinguish between functional and non-functional motif instances.

Function	al sites	ELM	classes	ELM in	stances	PDB structures		GO terms	P	ubMed links
Total	159		246		2702	348		549		2439
By category		LIG	137	Human	1594					
		MOD	31	Mouse	253		Biological Process	283	From class	1174
		DEG	25	Rat	130					
		DOC	22	Yeast	94		Cellular Compartment	119	From instance	1746
		TRG	20	Fly	90		•			
		CLV	11	Other	541		Molecular Function	147		

ELM Class

Condensed information about a motif. Regular Expressions used to annotate the motif (eg. "[KR] xLx{0,1}[FYLIVMP] for Cyclin motif)

DOC CYCLIN 1

Pattern:

Functional site class: Cyclin recognition site Functional site description: Functional site that interacts with cyclins, and thereby increases the specificity of phosphorylation by cyclin/CDK ELM with this model:

MODE CYCLIN 1 Substrate recognition site that interacts with cyclin and thereby increases phosphorylation by cyclin/cdk complexes.

Description: Predicted proteins should have a CDK phosphorylation site (#MOD_CDK_1). Also used by cyclin/cdk inhibitors. 1981.1.(0.1)[PYLIVMP]

Pattern Probability: Present in taxon: Stukaryota Interaction Domain:

¿Cyclin_N (PF00134) Cyclin, N-terminal domain (Stochiometry: 1

ELM Class

Condensed information about a motif. Regular Expressions used to annotate the motif (eg. "[KR] xLx{0,1}[FYLIVMP] for Cyclin motif)

Protein Name	Gene Name	Start	End	Subsequence	Logic	#Ev.	Organism	Notes
RB_HUMAN	ORBI	873	877	SHPPHICANAL PRINCIPLA	TP	3	Fi Homo saplens (Haman)	1H25
Q8UWJ8_CHICK	□CDH1-A	394	398	KLOSEST <mark>RYLYL</mark> ANSPOSEA	FP	1	R Gallus gallus (Chicken)	
PMYT1_HUMAN	□PKMYT1	486	489	GRFFSFEPRELLSLFEDTLD	TP	1	S Homo saplens (Human)	
DE2F1_HUMAN	DE2F1	90	94	LORPPVENLEL STOROGELA	TP	3	S Homo sapiens (Human)	1H24
CDN1C_HUMAN	JCDKN1C	31	34	ATABLEWOOFFE COACHERT	TP	1	Homo sapiens (Humari)	
DRUX_DROME	Orax	248	251	PTARRCVR <u>RTLF</u> TEINTQRE	TP	1	S Drosophila melanogaster (fruit fly)	
DE2F2_HUMAN	DE2F2	87	91	ACRLPAR <mark>ENLEL</mark> ECTORPYV	TP	1	S Homo saplens (Human)	
DE2F3_HUMAN	DE2F3	134	138	OOGSPRAKESTELCESCONGEL	TP	1	E Homo sapiens (Humaró	
DAKA12_MOUSE	DAkap12	501	504	Inadorac <mark>keta</mark> rrachetet	TP	1	E Mus musculus (House mouse)	14
CDC6_HUMAN	DCDC6	94	98	HERTLEOGRAL PRODUTERS	TP	2	R Homo septens (Haman)	200H
CDN1A_HUMAN	COKNIA	19	22	HACORENCEMPLES ACCURATE	TP	4	R Homo septens (Haman)	1% 14
CDN1A_HUMAN	DCDKN1A	155	159	THETOPYREE <mark>RELIP</mark> HEREP	TN	1	8 Homo sapiens (Haman)	
ORC6_YEAST	DORC6	178	182	ESPS TRENCHAPEEDEDEDE	TP	1	Saccharomyces cerevisiae (Baker's yeast)	
DP53_HUMAN	DTPS3	381	385	OQSTSRE NCLMF XTEOPSSD	TP	5	E Homo sapiens (Hamarò	1H26
RBL1_HUMAN	ORBL1	658	661	SPERCEAR <mark>BALF</mark> CEDPPREK	TP	3	Homo sapiens (Humarò	1H28
DRBL2_HUMAN	DRBL2	680	684	PPASTTS BRAFFE ENDS PS DG	TP	1	R Homo saplens (Hamaró	
HIRA_HUMAN	⊃HIRA	629	633	KARRLER <mark>SCLEL</mark> EVETVEEK	TP	1	S Homo saplens (Human)	

nn	0	CV	CI	IN

Functional site class: Cyclin recognition site Functional site that interacts with cyclins, and thereby increases the specificity of phosphorylation by cyclin/CDK

ELM with this model: MODE CYCLIN 1 Substrate recognition site that interacts with cyclin and thereby increases phosphorylation by cyclin/odk complexes.

Predicted proteins should have a CDK phosphorylation site (*MOD_CDK_1). Also used by cyclin/cdk inhibitors. Pattern: (RKI.L.(0.1)(FYLIVMP)

Pattern Probability: ¿Cyclin_N (PF00134) Cyclin, N-terminal domain (Stochiometry: 1

ELM Instance

Interaction Domain:

ELM Class

Condensed information about a motif. Regular Expressions used to annotate the motif (eg. "[KR] xLx{0,1}[FYLIVMP] for Cyclin motif)

	ince	Start	End	Su	ubsequence	Logic		PDB		Organism	Length
ः(Q89741) CI	IC6_HUMAN	94	94 98 RESTLATES		#5 <mark>885.VP</mark> 39QL02#S	тр	2CCH		b.	9 Homo sapiens (Haman)	
Instance evi		Methos	1	BioSource	PubMed	Logic	Reliability		Notes	1	
experimental	GMI:0114	x-ray c	rystalle	graphy	in vitro	SCheng,200	support	certain	Intera	ctionDetection FeatureDetection	
experimental	©MI:0096	р	ull dow	in	in vivo/in vitro	Petersen,199	support	certain	Intera	ctionDetection	
This ELM instance		e followi	ng swit	ching m	echanism(s) ann	otated at the A	ewitches.	ELM resourc	ec		

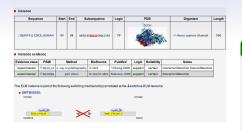
Functional site class: Cyclin recognition site Functional site that interacts with cyclins, and thereby increases the specificity of phosphorylation by cyclin/CDK

ELM with this model: MODE CYCLIN 1 Substrate recognition site that interacts with cyclin and thereby increases phosphorylation by cyclin/odk complexes.

Predicted proteins should have a CDK phosphorylation site (#MOD_CDK_1). Also used by cyclin/cdk inhibitors. (RK1.1.(0.1)(FYLIVMP)

Pattern: Pattern Probability:

Present in taxon: Interaction Domain ¿Cyclin_N (PF00134) Cyclin, N-terminal domain (Stochiometry: 1 PDB Structure: 1H24


ELM Instance

- Experimental Evidences

ELM Class

Condensed information about a motif. Regular Expressions used to annotate the motif (eg. "[KR]xLx{0,1}[FYLIVMP] for Cyclin motif)

DOC CYCLIN 1

Functional site class: Cyclin recognition site Functional site that interacts with cyclins, and thereby increases the specificity of phosphorylation by cyclin/CDK ELM with this model: PDOC CYCLIN 1

Description Substrate recognition site that interacts with cyclin and thereby increases phosphorylation by cyclin/odk complexes. Predicted proteins should have a CDK phosphorylation site (#MOD_CDK_1). Also used by cyclin/cdk inhibitors. Pattern:

(RK1.1.(0.1)(FYLIVMP) Pattern Probability:

Present in taxon: Stokervote Interaction Domain ¿Cyclin_N (PF00134) Cyclin, N-terminal domain (Stochiometry: 1

ELM Instance

- Experimental Evidences

ELM Class

Condensed information about a motif. Regular Expressions used to annotate the motif (eg. "[KR] xLx{0,1}[FYLIVMP] for Cyclin motif)

	ince	Start	End	Su	ubsequence	Logic		PDB		Organism	Length
○(Q99741) CI	IC6_HUMAN	94 98 REPT		RE RRENT ENGLETIKS	ТР	2CCH		b.	6 Homo sapiens (Human)		
Instance evi Evidence class		Methos	1	BioSource	PubMed	Logic	Reliability		Notes	1	
experimental	©MI:0114	x-ray c	rystalle	graphy	in vitro	SiCheng,200	06 support certain		Intera	ctionDetection FeatureDetection	
experimental	©MI:0096	р	ull dow	in	in vivo/in vitro	Petersen,195	9 support	certain	Intera	ctionDetection	
This ELM instance SWT10003:		e followi	ng swit	ching m	echanism(s) ann	otated at the a	Lewitches.I	ELM resourc	ec		

Functional site class: Cyclin recognition site Functional site Functional site that interacts with cyclins, and thereby increases the specificity of phosphorylation by cyclin/CDK

ELM with this model: MODE CYCLIN 1 Substrate recognition site that interacts with cyclin and thereby increases phosphorylation by cyclin/odk complexes.

Predicted proteins should have a CDK phosphorylation site (#MOD_CDK_1). Also used by cyclin/cdk inhibitors. Pattern: (RK1.1.(0.1)(FYLIVMP)

Pattern Probability: Present in taxon:

> ¿Cyclin_N (PF00134) Cyclin, N-terminal domain (Stochiometry: 1 PDB Structure: 1H24

ELM Instance

Interaction Domain

- Experimental Evidences
- Methods

PDB Structure: 1H24

ELM Class

Condensed information about a motif. Regular Expressions used to annotate the motif (eg. "[KR] xLx{0,1}[FYLIVMP] for Cyclin motif)

Sequence (Q99741) CDC6_HUMAN		Start End Subsequence		ubsequence	Logic	РОВ 2ССН			Organism		
				nr <mark>eselve</mark> rederater	тр				9 Hemo saplens (Human)	560	
I Instance evi			Methor		BioSource	PubMed	Logic	Reliability		Notes	1
experimental		xeray crystallography in vitro SCheng 2006 support certain interactionDetection FeatureDetection									
experimental	pull down			in vivo/in vitro	_			Intera			
This ELM instant		se followi	ng swit	ching me	echanism(s) ann	otated at the	Lewitches.	ELM resourc	ec		

Functional site class: Cyclin recognition site Functional site that interacts with cyclins, and thereby increases the specificity of phosphorylation by cyclin/CDK ELM with this model: MODE CYCLIN 1

Substrate recognition site that interacts with cyclin and thereby increases phosphorylation by cyclin/odk complexes.

Predicted proteins should have a CDK phosphorylation site (#MOD_CDK_1). Also used by cyclin/cdk inhibitors. Pattern: (RK1.1.(0.1)(FYLIVMP)

Pattern Probability: Present in taxon: ¿Cyclin_N (PF00134) Cyclin, N-terminal domain (Stochiometry: 1

ELM Instance

Interaction Domain

- Experimental Evidences
- Methods
- References

ELM Class

Condensed information about a motif. Regular Expressions used to annotate the motif (eg. "[KR] xLx{0,1}[FYLIVMP] for Cyclin motif)

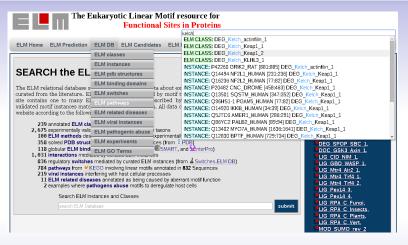
Sequence Start End S			bsequence	Logic		PDB		Organism			
○(Q99741) CD	C6_HUMAN	94	98	18821	KE <mark>RSELVY</mark> DROELO TRE	ТР		CCCH	b.	9 Homo sapiens (Human)	560
Instance evid	lence										
Evidence class	PSMI		Method	1	BioSource	PubMed	Logic	Reliability		Notes	7
Evidence class experimental	PSMI ©MI:0114			_		PubMed 9Chang,200	-	Reliability	Intera	Notes ctionDetection FeatureDetection	
	_	x-ray c		graphy		SiCheng,200	5 support	,	-		

Cyclin recognition site Functional site that interacts with cyclins, and thereby increases the specificity of phosphorylation by cyclin/CDI ELM with this model: PDOC CYCLIN 1

Substrate recognition site that interacts with cyclin and thereby increases phosphorylation by cyclin/edk complexes Predicted proteins should have a CDK phosphorylation site (MOD_CDK_1). Also used by cyclin/cdk inhibitors

Pattern: (RK1.1.(0.1)(FYLIVMP) Pattern Probability:

Interaction Domain ¿Cyclin_N (PF00134) Cyclin, N-terminal domain (Stochiometry: 1



ELM Instance

- Experimental Evidences
- Methods
- References
- Interactions

«MOD WntLipid«

ELM Home ELM Prediction ELM DB ELM Candidates ELM Information ELM downloads

»TRG Cilium Arf4 1»

Help

TRG AP2beta CARGO 1

Accession: ELME000247

Functional site class: AP-2 beta2 appendage CCV component motifs

Functional site description: Several motifs are responsible for the binding of accessory endocytic proteins to the beta2-subunit appendage of the adaptor protein complex AP-2 as part of their recruitment to the site of clathrin coated vesicle (CCV) formation. Proteins binding the platform subdomain have been found to be cargo family specific (for example can load all GPCRs, or all LDL receptor family members) clathrin adaptors. Accessory proteins which help in CCV formation bind the sandwich subdomain site or the alpha

ear domain

ELM Description: Motif binding as a helix in a depression on the top surface of the AP-2 beta appendage platform subdomain. The pattern [ED]x(1,2)Fxx[FL]xxxR is conserved in beta Arrestins, ARH and Epsin-1, -2 of vertebrates. It is also found in homologues of other metazoans, but the pattern is sometimes not matched exactly, meaning that the ELM regular expression will not

provide a match. In other lineages, if there is an equivalent motif, the pattern is likely to have diverged.

Pattern: [DE].{1,2}F[^P][^P][FL][^P][^P][^P]R

Pattern Probability: 0.0000182

Present in taxon:

8 Metazoa Interaction Domain B2-adapt-app C (PF09066) Beta2-adaptin appendage, C-terminal

sub-domain (Stochiometry: 1:1)

PDB Structure: 2G30

export 58 instances as: fasta tsv

The Eukaryotic Linear Motif resource for Functional Sites in Proteins

Search ELMs Instances Candidates Links About News Help Diseases

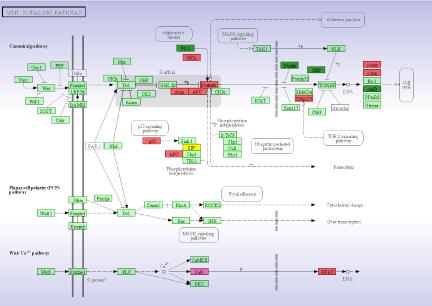
Search ELM Instances

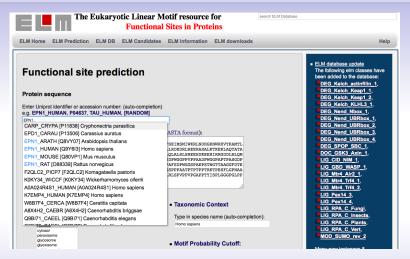
Full-Text Search (to show all instances, enter 'all' or '*') ap2

Filter by instance Logic true positive | . Filter by organism Homo sapiens

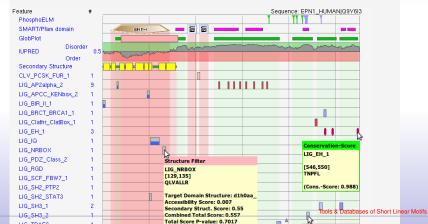
submit Reset

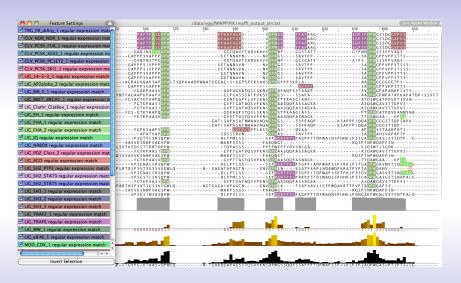
CLV
LIG
MOD
TRG


	 58 Instances for search term (click table headers for sorting) 	i 'ap2':							
	ELM identifier	Sequence	Start	End	Subsequence	Instance Logic	#Evidence	PDB	Organism
4	TRG_LysEnd_APsAcLL_1	OPRD_HUMAN	241	246	GLMLLRL <u>rsvrll</u> sgskekd	true positive	8		Homo sapiens (Human)
	TRG_AP2beta_CARGO_1	ARRB1_HUMAN	385	395	TNDDDIVFEDFARQRLKGMK	true positive	5	2IV8	Homo sapiens (Human)
ı	TRG_LysEnd_APsAcLL_1	HG2A_HUMAN	19	24	DQKPVMDDQRDLISNNEQLP	true positive	5		Homo sapiens (Human)
ı	LIG_AP2alpha_2	EPS15_HUMAN	672	674	DPFATSSTDPFSAANNSSIT	true positive	4		Homo sapiens (Human)
	LIG_AP2alpha_2	EPS15_HUMAN	692	694	SVETLKHNDPFAPGGTVVAA	true positive	4		Homo sapiens (Human)
	LIG_AP2alpha_2	EPS15_HUMAN	709	711	VAASDSAT <mark>DPF</mark> ASVFGNESF	true positive	4		Homo sapiens (Human)
	LIG_AP2alpha_2	EPS15_HUMAN	737	739	TLSKVNNEDPFRSATSSSVS	true positive	4		Homo sapiens (Human)
ı	TRG_AP2beta_CARGO_1	EPN1_HUMAN	377	386	FDTEPDEFSDFDRLRTALPT	true positive	4		Homo sapiens (Human)
ı	TRG_LysEnd_APsAcLL_1	ATP7A_HUMAN	1483	1488	SVVTSEP <u>DKHSLL</u> VGDFRED	true positive	4		Homo sapiens (Human)
	LIG_SxIP_EBH_1	CLAP2_HUMAN	492	502	ASAQ <u>KRSKIPRSQGC</u> SREAS	true positive	3		Homo sapiens (Human)
	LIG_SxIP_EBH_1	CLAP2_HUMAN	515	525	LSVA <u>rssriprpsvs</u> qgcsr	true positive	3		Homo sapiens (Human)
	TRG_LysEnd_APsAcLL_1	BCAM_HUMAN	604	609	HSGSEQP <u>EQTGLL</u> MGGASGG	true positive	3		Homo sapiens (Human)
	TRG_LysEnd_APsAcLL_1	NPC1_HUMAN	1271	1276	KSCATEERYKGT <u>ERERLL</u> NF	true positive	3		Homo sapiens (Human)
	LIG_APCC_KENbox_2	CKAP2_HUMAN	80	84	KLKTKMA <u>DKENM</u> KRPAESKN	true positive	2		Homo sapiens (Human)
	LIG_MAPK_1	MP2K1_HUMAN	3	11	MP <u>KKKPTPIQL</u> NPAPDGSAV	true positive	2		Homo sapiens (Human)
	LIG_MAPK_1	MP2K4_HUMAN	40	48	SSMQG <u>KRKALKLNF</u> ANPPFK	true positive	2		Homo sapiens (Human)
	TRG_AP2beta_CARGO_1	ARH_HUMAN	256	266	DDGL <u>DEAFSRLAQSR</u> TNPQV	true positive	2	2G30	Homo sapiens (Human)
	TRG_LysEnd_APsAcLL_1	CD44_HUMAN	708	713	GEASKSQ <u>EMVHLV</u> NKESSET	true positive	2		Homo sapiens (Human)
	LIG_AP2alpha_1	AMPH_HUMAN	324	328	QENIISF <u>FEDNF</u> VPEISVTT	true positive	1	1KY7	Homo sapiens (Human)
	LIG_AP2alpha_2	EP15R_HUMAN	599	601	RGSFGAMD <u>DPF</u> KNKALLFSN	true positive	1	Tools	Homo sapiens (Human)
t	LIG_AP2alpha_2	EP15R_HUMAN	618	620	NNTQELHP <u>DPF</u> QTEDPFKSD	true positive	1		Homo sapiens (Human)


ELM DATABASE:PATHWAYS

FI M PREDICTION TOOL





(Mouseover the matches for more details)

VIEW CONSERVATION IN JALVIEW

Questions?

fakeposters.com

LINEAR MOTIES AS MOLECULAR SWITCHES

Short Linear Motifs

- are compact, degenerate protein interaction interfaces (in IDRs)
- are ubiquitous in eukaryotic proteomes and mediate many regulatory functions:
 - directing ligand binding
 - providing docking sites for modifying enzymes
 - controlling protein stability
 - acting as signals to target proteins to specific subcellular locations

LINEAR MOTIES AS MOLECULAR SWITCHES

Short Linear Motifs

- are compact, degenerate protein interaction interfaces (in IDRs)
- are ubiquitous in eukaryotic proteomes and mediate many regulatory functions:
 - directing ligand binding
 - providing docking sites for modifying enzymes
 - controlling protein stability
 - acting as signals to target proteins to specific subcellular locations

Motif-mediated interactions

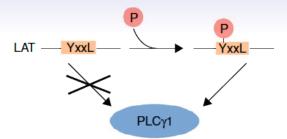
- occur with low affinity,
- are transient & reversible
- can be easily modulated.

LINEAR MOTIES AS MOLECULAR SWITCHES

Short Linear Motifs

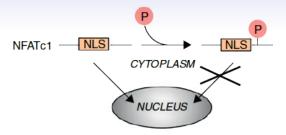
- are compact, degenerate protein interaction interfaces (in IDRs)
- are ubiquitous in eukaryotic proteomes and mediate many regulatory functions:
 - directing ligand binding
 - providing docking sites for modifying enzymes
 - controlling protein stability
 - acting as signals to target proteins to specific subcellular locations

Motif-mediated interactions

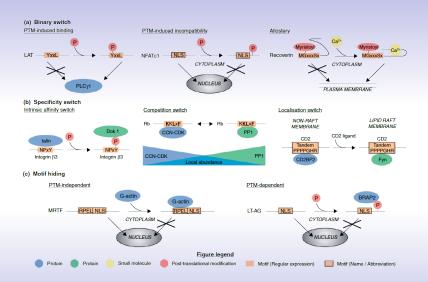

- occur with low affinity,
- are transient & reversible
- can be easily modulated.

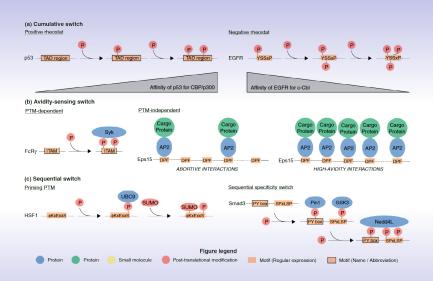
Motifs mediate switches

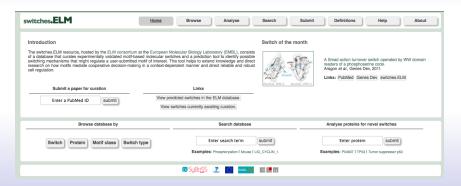
This makes SLiMs ideal regulatory modules and enable them to conditionally switch between "on" and "off" states or between multiple, functionally distinct on states.



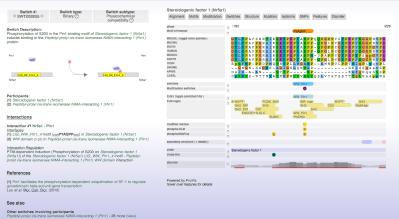
PTM-induced binding



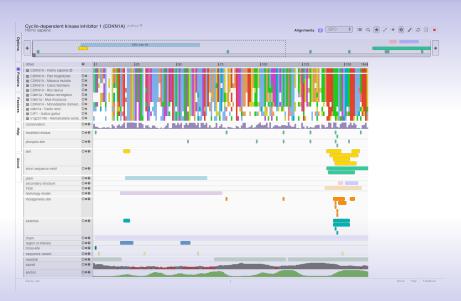

PTM-induced incompatibility



The switches.ELM **database** curates experimentally validated motif-based molecular switches


In addition, based on these validated instances, the switches.ELM **prediction** tool was developed to identify possible switching mechanisms that might regulate a motif-containing protein of interest.

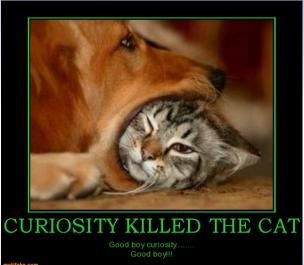
The switches.ELM database curates experimentally validated motif-based molecular switches.


In addition, based on these validated instances, the switches.ELM **prediction** tool was developed to identify possible switching mechanisms that might regulate a motif-containing protein of interest.

PROTEIN VISUALIZATION (PROVIZ)

ProViz http://proviz.ucd.ie/ is a tool to visualize biological data allowing the investigation of functional and evolutionary protein features. The tool is designed to be an intuitive and accessible resource to allow users with limited bioinformatic skills to rapidly access and visualise data pertinent to their research.

PROTEIN VISUALIZATION (PROVIZ)



"ProViz-a web-based visualization tool to investigate the functional and evolutionary features of protein sequences."; Jehl P, Manguy J, Shields DC, Higgins DG, Davey NE.; (Nucleic Acids Res. 2016 APR 16)

PROTEIN VISUALIZATION (PROVIZ)

Questions?

tifake.com