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Transient interactions, which involve protein interactions that are formed and broken easily, are important in
many aspects of cellular function. Here we describe structural and functional properties of transient interac-
tions between globular domains and between globular domains, short peptides, and disordered regions. The
importance of posttranslational modifications in transient interactions is also considered. We review tech-
niques used in the detection of the different types of transient protein-protein interactions. We also look at
the role of transient interactions within protein-protein interaction networks and consider their contribution
to different aspects of these networks.
Introduction
Interactions between proteins play an essential role in the proper

functioning of living cells. Different types of protein-protein inter-

actions have been defined in the literature (Nooren and Thornton,

2003a). These definitions include the distinction between

obligate and nonobligate complexes, where the former cover

complexes of protomers that cannot exist independently, as

opposed to nonobligate complexes. Another distinction can be

made between permanent and transient complexes. Permanent

protein-protein interactions (PPIs) are strong and irreversible,

whereas a complex qualifies as transient if it readily undergoes

changes in the oligomeric state.

Transient complexes can be further subdivided into weak and

strong. Weak transient complexes show a dynamic mixture of

different oligomeric states in vivo, whereas strong transient

complexes change their quaternary state only when triggered

by, for example, ligand binding. Weak transient interactions are

characterized by a dissociation constant (KD) in the micromolar

range and lifetimes of seconds. Strong transient interactions,

stabilized by binding of an effector molecule, may last longer

and have a lower KD in the nanomolar range (Nooren and Thorn-

ton, 2003a). This classification scheme, also summarized in

Figure 1, can prove very useful, but these distinctions are not

entirely clear cut and it is important to recognize the continuum

between the different types of interactions.

Structural Properties of Transient Interactions between
Globular Domains
Structural data have been exploited to characterize and distin-

guish different types of protein interaction (Lo Conte et al.,

1999; Nooren and Thornton, 2003a, 2003b; Chakrabarti and

Janin, 2002; Mintseris and Weng, 2003; Ansari and Helms,

2005). These indicate that transiently interacting proteins have

interfaces that are smaller in size than permanent interfaces

and have amino acid compositions that are not drastically

different from the rest of the protein surface—the proportion of

hydrophobic residues is the same as the rest of the surface but

interfaces are slightly richer in neutral polar groups. These tran-

sient interfaces also tend to be quite compact, comprising
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a central core that is fully buried during interaction, surrounded

by a rim that presents features more similar to the rest of the

surface than the interface core. Transient interfaces also tend

to be rich in waters.

Many proteins undergo conformational changes upon tran-

sient interaction, with the most extreme cases involving

disorder-to-order transitions, as discussed in a recent review

(Janin et al., 2008). Furthermore, it has also been observed that

strong transient dimers tend to have larger, less planar, and

sometimes more hydrophobic interfaces than weak transient

dimers, and that they often undergo more extensive conforma-

tional changes upon interaction (Nooren and Thornton, 2003a).

Finally, a recent studycomparing transient andpermanent homo-

dimers from the PDB suggests that the interfaces of the weak

transient homodimers are loosely packed and that this property

may contribute to their lower stability (Dey et al., 2010).

Residues at the interfaces of weak transient complexes are

more conserved than residues on the rest of the surface (Nooren

and Thornton, 2003b). However, when comparing the sequences

of proteins involved in transient andobligate complexes of known

structures, it also appears that transient interfaces evolve much

faster and therefore showgreater sequenceplasticity andsmaller

evidence of correlated mutations across the interface, because

the protomers have less time to adjust to changes in the partner’s

interface (Mintseris and Weng, 2005).

Based on the characterization of transient interfaces and their

specific features, a number of structure-based prediction

methods are being developed with the aim of predicting interac-

tions and interfaces between proteins, and in some cases, to

look specifically for transient complexes. Machine-learning algo-

rithms have been shown to have high potential in discriminating

permanent and transient PPIs (Liu et al., 2010). A large number of

state-of-the-art approaches to protein-protein interface (not

necessarily only transient) prediction have been recently re-

viewed (Ezkurdia et al., 2009).

Also, a link has been found between the stability of residues in

the unbound state and whether they are part of a transient inter-

face or not, thus suggesting possible new approaches for the

prediction of interfaces from unbound protein structures (Bonet
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Figure 1. Different Types of Protein Protein
Interactions on the Basis of Their Binding
Affinities
Binding affinity is inversely related to the dissocia-
tion constant (koff/kon) KD. While permanent inter-
actions feature strong binding affinities (KD in the
nM range), proteins interacting in a weakly tran-
sient manner show a fast bound-unbound equilib-
rium with KD values typically in the mM range. The
strong transient category of interactions illustrates
the continuum that exists between the weak and
the more permanent interactions. This category
includes interactions that are triggered/stabilized
by an effector molecule or conformational change.
An example is given by the Ras proteins, which
form tight complexes with their partners when
GTP-bound and only weak complexes when
GDP-bound.
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et al., 2006). Furthermore, structural changes have been found to

be frequent uponcomplex formation usinganapproachbasedon

a structural alphabet that represents possible backbone confor-

mations, and theCAPRI benchmark data set of proteins forwhich

the structures are available both in unboundandbound forms, i.e.

generally transient interactions (Martin et al., 2008). This supports

the importance of the induced-fit model of protein-protein inter-

action, according to which proteins undergo conformational

changes upon interaction.

Structural Disorder in Transient Interfaces
It has been shown recently that a significant number of interfaces

in the PDB (associated both with transient and permanent inter-

actions) can be characterized as protruding or interwound,

whereby a segment of the partner protrudes deep inside the

other partner (Yura and Hayward, 2009). This phenomenon

relates closely to the notion of disorder, because it has been

observed that the regions that are interwound in interfaces are

more likely to be disordered in the unbound state.

Intrinsic disorder is frequently associated with transient inter-

actions. Disorder-to-order transition upon binding is associated
Table 1. Examples of Tools for the Study of Intrinsic Disorder in a P

Tool Type Name Details

Database Database of Protein

Disorder (Disprot)

Contains details on intrinsicall

proteins with at least one exp

disorder. Currently contains 1

proteins, all manually curated

browseable, and each entry c

details for each disordered re

Prediction

Server

Predictor of Naturally

Disordered Regions (PONDR)

Takes an amino-acid sequenc

trained on sequences of know

using properties of the sequen

generate inputs values for the

Prediction

Server

Disopred Takes an amino acid sequenc

blast, neural networks, and a

parts of the sequence as orde
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with a decrease in conformational entropy and results in interac-

tions of low affinity (Singh et al., 2007). Interactions involving

proteins or regions that remain largely disordered in the bound

state feature few molecular contacts (see later discussion on

motifs) and may often be transient (Tompa and Fuxreiter, 2008).

Furthermore, disorder was found to be enriched among proteins

involved in cellular functions that show strong temporal variation

in activity and are thus likely to involve transient interactions, sup-

ported by the observation that long regions of disorder are found

in 66% of signaling proteins (Iakoucheva et al., 2002).

Increased recognition of the importance of structural disorder

in proteins has led to the development of a large number of bio-

informatics tools to predict disordered regions from protein

sequence. Some details on the existing tools for the study of

protein disorder are shown in Table 1, and the reader is directed

to recent reviews (Dosztanyi et al., 2010; He et al., 2009) for

further information. Disorder predictors have been explicitly

used to predict protein regions involved in interactions (Oldfield

et al., 2005); for instance, the recent web server ANCHOR

(Dosztanyi et al., 2009), which combines disorder prediction

with prediction of binding regions.
rotein

URL

y disordered proteins, defined as

erimentally determined region of

284 disordered regions for 594

. Proteins are searchable and

ontains annotations and further

gion within the protein

http://www.disprot.org

e as input. Uses neural-networks,

n disordered and ordered regions,

ces in windows of amino acids to

predictor

http://www.pondr.com/

e and uses an combination of PSI-

support vector machine to classify

red or disordered

http://bioinfadmin.cs.ucl.ac.uk/

disopred/
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Figure 2. Potential Binding Sites Predicted for the Tumor Suppressor p53
The Gene3D domain prediction shows the position of potential structural domains on the protein. ANCHOR-binding regions, and ELM-binding motifs show
potential binding sites for the protein. ELM predictions in red occur in regions covered by a predicted structural domain in Gene3D and are therefore of lower
confidence. Using the ELM resource itself might give better predictions since it uses additional filters that were not used here.
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Transient Interactions Mediated by Linear Motifs
Linear motifs (LMs) or SLiMs have attracted a lot of attention in

recent years (Ren et al., 2008). LMs are short (generally 2–8 resi-

dues in length), conserved amino acid sequences that can

interact with globular domains from the same and/or other

proteins (Diella et al., 2008). They may account for 15%–40%

of interactions between proteins (Petsalaki and Russell, 2008;

Neduva et al., 2005). Though usually found in intrinsically disor-

dered regions, LMs can also be found in exposed flexible loops

within globular domains, where they do not interfere structurally

or functionally with the domain in which they are found (Gould

et al., 2010). Figure 2 shows a comparison of the LM(s) obtained

from the ELM database (Gould et al., 2010) and ANCHOR

binding region predictions for the tumor suppressor protein p53.

Interactions mediated by LMs have very different properties

from those interactions between two globular domains because

they bind with much smaller interface areas (Stein et al., 2009)

and weaker affinities (Diella et al., 2008). Such properties help

explain why LM-mediated interactions are frequently involved

in signaling and other regulatory transient interactions, where

the ability to form and break interactions readily is essential in

order to respond quickly to cellular perturbations and changes

in environment (Stein et al., 2009).

Although weak in nature, LM-mediated interactions show high

specificity with their binding partners. In part, this is conferred by

cellular location eliminating certain interactions through the
Figure 3. Details of Different Types of Transient Protein-Peptide Intera
(A) Peptide (green) from the KID domain of CREB binding to a planar part of the su
an important role in binding (PDB:1KDX).
(B) Cartoon representation of the third PDZ domain from the synaptic protein P
a b sheet in the domain, in a mechanism coined b-augmentation. H-bonds betw
(C) a helical peptide (red) from the alpha subunit of calcineurin binding in a deep
(gray and dark gray) (2W73).
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absence of other partners (Stein et al., 2009). Specificity may

also be determined by regions adjacent to LMs. Analysis of the

relative contributions of LMs and their flanking regions to the

interaction-binding energy has shown that flanking regions

contribute 21% of the binding energy on average (Stein and

Aloy, 2008). The importance of flanking regions is further sup-

ported by the observation that they are often structurally

conserved (Chica et al., 2009).

While an LM might not form a stable tertiary structure on its

own, it will usually fold into a stable structure (along with its flank-

ing regions) once bound to a partner domain. The different types

of structures adopted by peptide sequences upon binding have

been classified into categories (Mohan et al., 2006): those

forming a helices, b strands (see also Remaut and Waksman,

[2006]), and a final class forming irregular structure elements

(see London et al., [2010] for a more recent analysis). Some

example transient peptide-protein interactions are shown in

Figure 3. In reality, the complexes these molecules form are

usually composed of multiple interactions, and the simultaneous

existence of these multiple weak low-affinity interactions gives

an inherent stability to the complexes. An example of such coop-

erativity is given in Figure 4, and more examples can be seen in

a recent review by Gibson (2009).

This exploitation of multiple simultaneous low-affinity interac-

tions instead of a series of pair-wise interactions allows a much

more deterministic regulation of cell processes, ensuring
ctions
rface of the KIX domain of CBP (gray); a phosphate represented as sticks plays

SD-95 (green) interacting with a peptide (pink). An extra b strand is added to
een strands in the b sheet are represented as dashed yellow lines (1BE9).
groove at the interface between two subunits of the calmodulin homodimer
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Figure 4. The Step-wise Formation of the Clathrin/AP2 Synaptic Vesicle Complex
An important component of the complex is a set of accessory proteins that, in the initial phase of the vesicle formation, interact simultaneously with many cargo-
bound AP2 molecules to help them cluster along the membrane (A and B). These accessory proteins cooperatively stabilize the resulting complex by further
binding one another. Only then is Clathrin recruited to the growing complex (B), and many of the accessory proteins change their interaction partner shifting
from AP2 to Clathrin, allowing recruitment of plug-in module dynamin that drives vesicle scission (C and D). Importantly, many of the accessory proteins in ques-
tion exist in low concentrations andmediate only low-affinity interactions, yet they are stabilized within the complex by amechanism of cooperativity, owing to the
synergy between their many interactions with proteins AP2 or Clathrin and between themselves (Schmid and McMahon, 2007).
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messenger molecules are guaranteed to reach their intended

target, and that a small starting signal is not lost, as might

happen if these molecules had to diffuse through the cell un-

aided, binding only with low affinity when they meet their in-

tended targets (Gibson, 2009; Diella et al., 2008).

Molecular recognition features (MoRFs) are another type of

protein-protein interaction-mediating peptide (Oldfield et al.,

2005, 2008; Mohan et al., 2006). They are longer than LMs

(10-70 residues) andare always locatedwithindisordered regions.

MoRFs undergo a disorder-to-order transition upon binding

(Mohanet al., 2006). TheyoftenoverlapwithLMsand their flanking

regions (Fuxreiter et al., 2007;Dunker et al., 2008; Ren et al., 2008).

Multispecificity and the Role of Posttranslational

Modifications

Several LMs may coexist together within a given disordered

region and it is not unusual for them to overlap. The tumor

suppressor protein p53 provides a well-characterized example,

for which available structures show that the same disordered

region contains multiple overlapping LMs that bind to different

interaction partners. Interactions with two such partners, i.e.

SIR2 and Cyclin A2, are shown in Figure 5. Both these proteins

bind to the same natively unstructured region in the C-terminal

region of p53. This region has been predicted to contain multiple

LMs and several proteins are predicted to bind to the different

LMswithin it. These interactions are thereforemutually exclusive,

allowing p53 to perform different roles depending on which of its

partners are present in its environment, andprovides a keymech-

anism for the cell to switch between different processes (Neduva

and Russell, 2005; Oldfield et al., 2008). This ‘‘molecular switch’’

is often modulated by posttranslational modification (PTM).
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The p53-MDM2-USP7 pathway provides an interesting bio-

logical example of how the binding specificity of a disordered

region is modulated by PTMs, leading to switch-like behavior.

Certain stress conditions reduce the specificity of the USP7-

MDM2 complex via phosphorylation, leading to free USP7 that

is then available to bind to and de-ubiquitinate p53 (Figure 5)

(Brooks et al., 2007). The scaffolding protein dystroglycan

provides a further example of molecular switching, where tyro-

sine phosphorylation of specific residues can affect its cellular

function by changing its binding partners (Moore and Winder,

2010).

The transient, often reversible nature of PTMs, combined with

their ability to modulate the binding specificity of LMs, allows

them to play a major role as regulators of cellular processes.

Computational analysis has shown that the set of protein

complexes involved in the cell cycle is similar for all eukaryotes,

but that they differ in PTMs and transcriptional control (Jensen

et al., 2006). Recent reviews providemore details on the different

existing types of PTMs, and on the role of PTMs in PPIs and

signaling pathways (Stein et al., 2009; Boehme and Blattner,

2009; Lin et al., 2010).

Transient Interactions in Protein Interaction Networks
Hubs are proteins that are involved in significantly large numbers

of interactions within protein interaction networks (PINs). Tran-

sient interactions play an important role in determining the

behavior of these proteins (Kim et al., 2006; Singh et al., 2007;

Higurashi et al., 2008). In a pioneering study, Han et al. (2004)

showed that while some hub proteins are highly coexpressed

with their partners, implying that they exist as stable complexes,
erved



Figure 5. Different Types of Transient
Protein-Protein Interactions Involving p53
Edges represent interactions between p53 and its
partners. All proteins are annotated with their
names and 2D representations showing putative
domains from Gene3D or Pfam (longer, rounded
rectangles) and putative ELM-binding regions
(shorter rectangles). Each protein is connected to
its binding partner. Colors in the structures corre-
spond to those in the sequence, e.g., pink ELMs in
the 2D representation of p53 correspond to the
pink segment in the structure of the interaction
between p53 and USP7. Interactions between
p53 (beige peptide) and MDM2 (light-blue domain)
(PDB: 1YCQ), p53 (pink peptide) with USP7 (dark
green domain) (2FOJ), and USP7 (dark green
domain) with MDM2 (orange peptide) (2FOP)
represent protein-peptide transient interactions,
mediated by linear motifs predicted from ELM.
USP7 interacts with peptides from p53 and
MDM2 using the same interface. According to
one model (Brooks et al., 2007), USP7 interacts
with MDM2 in normal conditions, thereby prevent-
ingMDM2 self-ubiquitination and ensuring that it is
able to ubiquitinate p53, causing degradation of
the latter. However, certain stress conditions
reduce the affinity of the USP7-MDM2 interaction
through phosphorylation, leading to free USP7

that is then able to deubiquitinate p53. The interaction between the core domain of p53 (blue domain) and 53BP2 (red domain) (2YCS) represents a transient
domain-domain interaction, where binding of 53BP2 enhances the DNA-binding and transactivation functions of P53 on the promoters of proapoptotic genes.
p53 can also bind with either Cyclin a2 (light green) (1H26) or Sir2 (yellow) (1MA3) using the same region, shown in purple.
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other hubs have partners that vary in expression, suggesting that

they may bind their partners at different times in a transient

manner. These two types of hubs were termed ‘‘party’’ and

‘‘date’’ hubs, respectively.

Based on structural data, hubs have also been classified into

singlish (with one or two interfaces) and multi-interface (with

more than two interfaces). It has been postulated that singlish

interface hubs only bind their partners interchangeably in a tran-

sient fashion (Kim et al., 2006; Tuncbag et al., 2009). Another

study, exploiting the notion of binding states (the number of

complexes the protein can be found in) rather than number of

interfaces, proposed yet another classification of hubs. This

consists of two main categories: transiently interacting proteins

that can be found in several different binding states and proteins

that are found in a unique binding state. The latter group includes

hubs that are part of large stable complexes (Higurashi et al.,

2008).

The Role of Disorder in Transient Interactions of Hubs

Several studies have pointed to the importance of disordered

regions in the role of hub proteins. Transiently interacting date

hubs have been found to be enriched in disordered residues

and show a significantly higher number of disordered regions

in comparison with stably interacting party hubs (Singh et al.,

2007; Ekman et al., 2006). It has also been shown that, unlike

the multi-interface stable hubs, the ‘singlish interface’ (date-

like) transient hubs tend to be enriched in disordered residues

compared with the whole proteome (Kim et al., 2008).

When lookingspecifically at interfacesurfaces, stablehubsalso

display an abundance of disordered residues (Higurashi et al.,

2008), consistent with the established role of disorder in the self

assembly of supramolecular stable complexes (Namba, 2001).

Disorder is also a useful property for date hubs because it

allows several LMs to coexist within the same stretch of resi-
Structure
dues, where it binds to different targets at different times (Gould

et al., 2010).

Further evidence supporting the role of intrinsic disorder in

transient interactions in PINs comes from comparative interac-

tomics, which indicates that the increase in complexity and

extensiveness of PINs along the tree of life, from simple prokary-

otes to unicellular and finally higher eukaryotes, is concomitant

with an increase in disorder content in their proteome (Ward

et al., 2004). A higher level of disorder in complex eukaryotic pro-

teomes may be associated with an increase in transient interac-

tions, perhaps in part to mediate functions particular to

metazoan organisms such as intercellular signaling, and an

increase in regulation of various biological processes (Levy and

Pereira-Leal, 2008; Haynes et al., 2006).

The Role of Transient Interactions in the Dynamics

of PINs

PINs are intrinsically dynamic; all interactions within a cell do not

occur at the same time and in the same location. Proteins often

come together to form large complexes (Schmid and McMahon,

2007). Subsets of protein-protein interactions within these

complexes may be transient, and this helps explain the dynamic

nature of these complexes; different combinations of these tran-

sient subsets allow the complex to form different states. These

different states, in turn, affect the function of the complex.

Structural mechanisms such as allostery and cooperativity

can play an important role in the dynamics of complexmachines.

The Clathrin/AP2 endocytic vesicle complex provides a good

example of cooperativity. It features a sequence of intermediate

oligomeric states (illustrated in Figure 4), ultimately leading to the

formation of a mature vesicle (Schmid and McMahon, 2007).

The assembly of the vesicle results from a combination of coop-

erativity and structural flexibility and is mediated by a number of

accessory proteins that use transient interactions to help recruit
18, October 13, 2010 ª2010 Elsevier Ltd All rights reserved 1237
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various components of the complex in a timely fashion (Schmid

and McMahon, 2007).

As a final note, it has been suggested that hubs that help

bridge the functional modules in PINs engage mostly in dynamic

(possibly transient) interactions with partners. This supports the

idea that transient interactions may act as a mechanism to orga-

nize and regulate the functional flow in protein networks

(Komurov and White, 2007).

The Importance of Transient Interactions in Proposed

Models of PIN Evolution

Our knowledge of the different types of PPIs has important impli-

cations for existing theories on the evolution of PINs. The dupli-

cation-divergence model (Ispolatov et al., 2005) proposes that

a duplicate protein inherits some or all of the associations from

its ancestor. This model may not make sense for obligate

complexes as the duplication of a subunit participating in an obli-

gate complex is not desirable as it would lead to a stoichiometric

imbalance in the concentration of the individual constituents of

the complex (Veitia, 2003). Such a constraint is not observed

with transient homomer complexes that were shown to have

evolved in higher organisms to incorporate additional copies of

their constituent protomers (Nooren and Thornton, 2003a).

Duplication in networks was further examined by Kim et al.

(2006),who found that paralogs frequently use the same interface

to bind a common partner (i.e., a date hub protein) and rarely

interact at different sites, as this would have required coevolution

of the hub and the duplicate protein to form a new interface.

The duplication-divergence model (applied to both transient

and permanent complexes) draws support from structural

observations that suggest that a significant proportion of protein

complexes evolve via duplications of proteins involved in

homomeric interactions (Pereira-Leal et al., 2007). Such duplica-

tions, followed by divergence of one or the other duplicated

copy, result in heteromeric interactions of paralogous proteins.

More recent studies exploiting additional experimental interac-

tion data and protein family information confirmed this trend

but failed to detect the trend in E. coli, suggesting specific

constraints might be operating in prokaryotic organisms (Reid

et al., 2010).

Experimental Detection of Transient PPIs
Owing to their unstable nature, weak PPIs can be technically

difficult to study and harder to detect than more stable interac-

tions. The high-throughput yeast two-hybrid (Y2H) screen is

able, in principle, to detect binary transient interactions (Shoe-

maker and Panchenko, 2007a). However, as with other experi-

mental PPI-detection methods, Y2H has its own weaknesses,

including a high false-positive rate and attempts to deal with

this problem often result in reducing the overall ability of the

method to detect transient interactions (Bruckner et al., 2009).

Despite this, Y2H remains the most popular method for large-

scale detection of PPIs, owing to its scalable and accessible

nature (Bruckner et al., 2009). Recent technological develop-

ments of the approach have enabled detection of additional

types of interactions, such as those involving cytosolic,

membrane-bound, or extracellular proteins (Bruckner et al.,

2009). Other research efforts have focused on counteracting

the problem of false negatives. For instance, a recent study

advised on the benefit of pooling interaction data readouts
1238 Structure 18, October 13, 2010 ª2010 Elsevier Ltd All rights res
from repeated Y2H screens in order to achieve higher detection

coverage (Venkatesan et al., 2009). This approach was shown to

have the additional benefit of highlighting the transient interac-

tions, since these are often only detected by single screens in

contrast to the more permanent type of interactions whose

stable nature allows them to be detected repeatedly in multiple

screens (Vinayagam et al., 2010).

Another recognized high-throughput PPI detection method is

tandem affinity purification run in conjunction with mass spec-

troscopy (TAP-MS) (Collins and Choudhary, 2008). The method

has been traditionally unable to detect transient interactions,

which are often lost during the washing steps necessary to

remove nonspecific binding. However, through the use of chem-

ical crosslinking, it has become possible to freeze transiently

formed complexes by inducing covalent-bond formation

between interacting partners in vivo (Worthington et al., 2006);

further technological developments then allow preservation of

the crosslink during the washing phase of TAP (Tagwerker

et al., 2006; Stingl et al., 2008).

The application of TAP-MS with crosslinking has been limited

to small-scale detection of transiently formed complexes

(Tagwerker et al., 2006; Stingl et al., 2008); its large-scale

efficacy remains to be demonstrated. Scalability also remains

an issue with other technical advances for detecting transient

interactions; for instance, the protocol applying single-step

affinity purification combined with SILAC (stable isotope-labeled

amino acids), which has been recently shown to detect the

dynamic components of protein complexes (Mousson et al.,

2008).

A functionally important subset of transient interactions is

dependent on PTM events. These interactions are often missed

when PPI screening is performed in yeast. This limitation has

been tackled in different ways, including the use of a mammalian

cell culture system, an approach that remains constrained by the

troublesome nature of mammalian cell transfection (Bruckner

et al., 2009). Among other methods that feature the use of

endogenous cell systems for PPI screening, the bimolecular

fluorescence complementation (BiFC) assay is worth

mentioning, owing to its ability to detect transient (as well as

permanent) PPIs in intact cells, eliminating the need for purifica-

tion (Morell et al., 2007) at a potentially high-throughput rate

(Kerppola, 2006). The ability of various experimental techniques

to identify transient PPIs is summarized in Figure 6.

Computational Prediction of Transient PPIs
A rigorous assessment of high-throughput as well as literature-

curated PPI data has shown that experimental data can be prone

to error and are not completely comprehensive (Venkatesan

et al., 2009; Braun et al., 2009; Cusick et al., 2009). Therefore,

computational methods can be applied to increase confidence

and predict interactions currently hidden from the experimental

techniques.

There are now many types of computational tools to predict

interactions between proteins, including methods that rely on

structural data, genomic context information, experimental

data, and methods that combine these data sources. Interaction

prediction methods have been the subject of several recent

reviews (Shoemaker and Panchenko, 2007b; Skrabanek et al.,

2008; Valencia and Pazos, 2008). We do not aim to review the
erved



Figure 6. The Different Types of Data
Captured by Various PPI Detection and
Prediction Methods
Single approaches can be biased and limited, but
when taken together they can provide a more
comprehensive view of biological networks.
BiFC, bimolecular fluorescence complementation;
TAP, tandem affinity purification; DLS, dynamic
light scattering; SLS, static light scattering.
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different approaches here, but briefly consider how these

methods can be enhanced by combining them and by including

predictions based on experimental data. We will then briefly

review methods aimed at predicting peptide-mediated interac-

tions, as these are often involved in transient interactions and

have been less extensively covered in the literature.

Computational tools that exploit microarray data can be used

for predicting protein interactions. The underlying idea for these

approaches is to look for gene coexpression across different

conditions, assuming proteins that display similar patterns of

expression are more likely to be associated functionally.

Although the coexpression-based approach is more suited to

predicting strongly correlated stable complexes (Figure 6), the

development of statistical frameworks that attempts to find

temporal coexpression of genes in a subset of conditions has

broadened the applicability of the method to predicting transient

interactions (Adler et al., 2009). However, this approach aims to

predict functionally associated proteins, not necessarily those

that are physically interacting (Figure 6).

Integrating different data sources can deliver significantly

increased performance (Jansen et al., 2003; Hwang et al.,

2005; Myers and Troyanskaya, 2007; McDowall et al., 2009).

These integrated approaches are identifying protein associa-

tions not detected by the experimental methods (Brown and

Jurisica, 2005). In a recent study, less than 1% of the protein

associations predicted using an integrated computational

approach were matched by experimental data. The predicted

associations not found by the experimental studies included

sets of highly connected proteins likely to be involved in signaling
Structure 18, October 13, 2010 ª
and regulation, and therefore likely to be

transient (Ranea et al., 2010).

Prediction of Transient

Peptide-Mediated PPIs

Current high-throughput experimental

techniques for the discovery of protein-

protein interactions can show significant

underrepresentation of LM mediated

peptide-protein interactions. For ex-

ample, they account for as little as 1% of

all putative interactions in some Y2H

screens, much lower than the number of

interactions they are estimated to account

for in vivo (Neduva and Russell, 2006).

Experimental detection of peptide-

mediated PPIs is difficult for several

reasons. The fact that multiple partners

might bind to many regions of the protein

being analyzed makes it difficult to deter-

mine which peptide is responsible for
an interaction with a given partner. In addition, the bound

complexes can be difficult to capture because they are involved

in transient processes with low affinity interfaces (Diella et al.,

2008). Finally, a general problem with any transient interaction

is that the conditions under which the interaction is being

detected are critical. This is especially true for some peptide-

mediated interactions where PTMs of the peptide are important

forbinding tooccur. Inorder toguidesuchexperiments, anumber

of computational methods have been developed to predict

peptide-protein interactions, the domains involved, and the

LMs they interact with.

Computational methods to predict LMs generally search for

conserved stretches of residues that may be responsible for

binding globular domains. However, this process is very diffi-

cult for LMs, as their short length, with sometimes only a few

key residues being conserved, means that there can be large

numbers of false positives. Biological information, such as

cellular compartmentalization of the query protein and whether

or not the part of the protein in which the motif is found is

ordered, must be taken into account to address this problem.

The reader is directed to the recent review by Diella et al.

(2008) for a more in-depth description of LM prediction

methods.

Structure-based methods to predict potential interactions

between LMs and globular domains also exist (see Table 2 for

further details and examples). Of particular interest to the struc-

tural biologist is PepSite (Petsalaki et al., 2009), which, given a

protein-peptide interaction, predicts further details, for example,

binding position and orientation.
2010 Elsevier Ltd All rights reserved 1239



Table 2. A Selection of Computational Tools for the Prediction and Analysis of Interactions Involving Disordered Regions

Focus Name Details URL

Predict interactions between

peptide and domain

ADAN Database, accessible online. Contains functionally annotated

protein domain structures involved in interactions with linear

motifs, where possible alongside their peptide ligands. In

addition, it performs a structural prediction of the putative ligands

for a given domain using a domain if available, or homology

modeling if not, and then the FOLDX algorithm, and stores the

predictions.

http://adan-embl.ibmc.umh.es

Predict interactions between

peptides and domains

PepSite Software, accessible online. Predicts potential binding areas in

peptides that bind to a known, and predicts the orientation and

position of the binding sites on the protein.

http://pepsite.embl.de/

Predict interactions between

peptides and domains

SMALI Software, accessible online. Takes as input a peptide, and looks

for potential domain binding partners, or takes an SH2 domain as

input and looks for potential binding domains, from a user-

specified list.

http://lilab.uwo.ca/SMALI.htm

Predict interactions

between peptides

and domains

FOLDX Software. Has been used to predict peptide interaction partners

for SH2 domains, and also is employed by ADAN to predict

partner domains.

http://foldx.crg.es/

Viewing peptide-

protein interactions

3DID Database, accessible online. Contains high resolution solved

structures of domain-domain protein interactions, and currently

(as of September 2010) 2345 structure of domain-motif

interactions. The interactions were taken from the protein

databank by taking all PDB entries containing at least two

interacting proteins and filtering these entries using information

from the protein families database (Pfam) and data on known

protein binding linear motifs from the Eukaryotic Linear Motif

database.

http://3did.irbbarcelona.org/

Viewing peptide-protein

interactions

PEPX Database, accessible online. Contains protein-peptide

complexes. Browseable by several methods including CATH

domain superfamily. To populate the database, the PDB was

mined to find 1431 protein-peptide complexes with peptides of

length 35 residues or less, which were clustered using three-

dimensional similarity of the protein-peptide interface.

http://pepx.switchlab.org/

Detection of disordered

regions involved in interactions

ANCHOR Server uses disorder prediction methods (specifically IUPred) and

identifies potential binding sites where there is a dip in predicted

disorder

http://anchor.enzim.hu/

Novel motif detection DiLiMot Server. Takes a set of protein sequence that carry a common

feature and looks for consensus motifs between the sequences.

http://dilimot.embl.de/

Novel motif detection D-motif/D-star Software (downloadable). Uses interaction data alongside

sequence information to improve results and reduce false

positives

http://www.comp.nus.edu.sg/

�bioinfo/hugowill/DSTAR.html

Find already known motif ELM Database and server. An ELM motif is a regular expression that

describes an LM. The database allows the different instances of

themotifs to be browsed, and links to experimental methods used

to determine the instance, and also gives a quality score. When

searching the database with a query set of proteins in order to

predict LMs in a query protein, ELM uses a number of filtering

steps to reduce false positives and ensure only biologically

plausible instances are returned

http://elm.eu.org/

Find already known motif Scansite Database and server, for a number of domains, predicts potential

interactors with domains involved in signaling, important for

identifying potential transient interactors. User can search with

own motif or use predetermined ones within Scansite.

http://scansite.mit.edu/

Structure

Review
Whilemuch progress has beenmade on the prediction of inter-

actions mediated by disordered regions, it must be stressed that

most predictionmethods suffer fromahigh rate of false positives.

Some increased confidence might be gained by combining

differentmethods, but the predictions should be validated exper-
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imentally. Computational predictions confirmed experimentally

have been demonstrated in the detection of peptides that modu-

late platelet function (Edwards et al., 2007), as well as peptides

that interact specifically with different basic-region leucine zipper

transcription factors (Grigoryan et al., 2009).
erved
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Conclusion
Transientprotein-protein interactionsperformessential functional

roles in biological systems, notably in regulating the dynamics of

biological networks. However they are not easy to detect experi-

mentally. Obtaining high-resolution three-dimensional structures

of transient complexes is challenging. The efficacy of X-ray crys-

tallography for this purpose is limited, owing to the difficulty in

crystallizing weak interactions, and NMR is therefore the best

candidate for characterizing structures of transient complexes

(Vaynberg and Qin, 2006). NMR is constrained in the size of the

complexes it can deal with, but a number of technological

advances have reduced that limitation (Bonvin et al., 2005) and

more andmorestructures of transient protein-protein interactions

are being solved (Vaynberg and Qin, 2006). NMR has certainly

been used successfully for solving the structures of several

domain-peptide interactions (Shi and Wu, 2007), and the fact

thatmany transient interactionsaremediatedbysuch interactions

between domains and small peptides suggests that NMR has the

potential to provide very useful structural insights into transient

PPIs in general. Stabilization of weak interactions by chemical

crosslinking has also been used in combination with other

approaches such as mass spectrometry to obtain insights into

the structures of transient PPIs (Singh et al., 2010).

Structural information can also be inherited between proteins

exploiting the same interface peptide region on a common

partner. For example, if domain A is able to interact with two

different domains, B and C, but is interacting with both of them

via the same peptide on their surface, solving the structure of

the complex of domain A with the interacting peptide from

B might be sufficient to give insights into the interaction mecha-

nism between both A-B and A-C (see also Bravo and Aloy,

[2006]).

Computational approaches for predicting protein interactions

can prove very helpful in extending the known repertoire of tran-

sient interactions. Several recent discoveries and approaches

have emerged that have boosted our ability to predict transient

PPI. For example, with regards to characterizing the protein

surfaces involved in interactions, the increasing numbers of

structures of protein complexes in the PDB have helped identify

distinguishing properties of interfaces in transient interactions

between globular domains (Nooren and Thornton, 2003b) and

have allowed the development of automated methods to predict

transient interactions from structural data with some success

(see for example Block et al., [2006]).

It is becoming clear that interactions involving disordered

regions or LMs play an extremely important role in PINs, and

that these interactions are very often transient and involved in

regulation of cell processes. These types of interactions are

particularly important in higher organisms, and understanding

them better may have important implications, notably for our

understanding of disease and for the discovery of new drug

targets (Russell and Gibson, 2008; Neduva and Russell, 2006).

Computational and experimental approaches are already being

developed to recognize these motifs.

The emerging picture of the cell is one in which weak interac-

tions between biomolecules are made possible by the existence

of molecular scaffolds close to which biomolecules can be found

in high concentrations, thereby promoting interactions despite

their weak affinity (Gibson, 2009). In this context, it is likely that
Structure
transient interactions will be found to play an even more impor-

tant role than is currently understood.

Methods to identify transient interactions between proteins

can only be improved if we continue to refine our understanding

of the properties of such interactions at the structural, sequen-

tial, and systems biology levels. This process will be facilitated

by the accumulation of interaction data from systems biology

and structural biology. Continuous development of technologies

that are fine-tuned for the detection of weak protein interactions

will help us gain further knowledge about the structural basis of

transient interactions andwill improve our ability to computation-

ally predict them.
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