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ABSTRACT Clustering is one of the most powerful tools in computational biology. The conventional wisdom is that events that
occur in clusters are probably not random. In protein docking, the underlying principle is that clustering occurs because long-
range electrostatic and/or desolvation forces steer the proteins to a low free-energy attractor at the binding region. Something
similar occurs in the docking of small molecules, although in this case shorter-range van der Waals forces play a more critical
role. Based on the above, we have developed two different clustering strategies to predict docked conformations based on the
clustering properties of a uniform sampling of low free-energy protein-protein and protein-small molecule complexes. We report
on significant improvements in the automated prediction and discrimination of docked conformations by using the cluster size
and consensus as a ranking criterion. We show that the success of clustering depends on identifying the appropriate clustering
radius of the system. The clustering radius for protein-protein complexes is consistent with the range of the electrostatics and
desolvation free energies (i.e., between 4 and 9 Å); for protein-small molecule docking, the radius is set by van der Waals
interactions (i.e., at ;2 Å). Without any a priori information, a simple analysis of the histogram of distance separations between
the set of docked conformations can evaluate the clustering properties of the data set. Clustering is observed when the
histogram is bimodal. Data clustering is optimal if one chooses the clustering radius to be the minimum after the first peak of the
bimodal distribution. We show that using this optimal radius further improves the discrimination of near-native complex
structures.

INTRODUCTION

In the last decade, clustering has become a ubiquitous tool in

computational structural biology. Early on, clustering was

used to detect common three-dimensional structural motifs

in proteins (1). The underlying principle behind this com-

monality is that evolution has developed thermodynamically

accessible folding units that tend to be preserved among

large sets of protein families. More recently, clustering has

become a very useful tool for protein structure prediction (2),

and at every level of homology modeling—i.e., structure (3),

sequence (4), and alignment (5). However, it is not fully

understood whether the clustering is solely determined by

the existence of many structural neighbors around the native

state, or if the result at least partially depends on the par-

ticular simulation method used in the calculations. In fact,

one cannot fail to note that, to a large extent, the success of

clustering in structure prediction is due to the lack of an

appropriate free-energy estimate of model structures; thus,

recurrence of structural motifs is often the most reliable de-

terminant of a good structure.

Most macromolecular interactions require a rapid and

highly specific association process. A successful reaction

between proteins requires the appropriate encounter of a re-

active patch. This is often achieved by long-range electro-

static and/or desolvation forces that bias the approach of the

molecules to favor reactive conditions. This steering leads to

the clustering of ligands near their binding region, thus speed-

ing up the reactions. Quantitative analyses of the protein

binding free energy (6–11) have confirmed this rationale by

establishing a direct relationship between clustering and the

prediction of protein interactions.

Clustering of bound conformations near the native state

has also been observed in protein-small molecule interac-

tions, both experimentally and computationally. X-ray and

NMR structures of proteins, determined in aqueous solutions

of organic solvents, show that the organic molecules cluster

in locations near the active site of enzymes, delineating the

binding pockets (12–16; see also Ref. 17 for a cluster anal-

ysis of bound water molecules). All other bound molecules

are either in crystal contacts, occur only at high ligand con-

centrations, or are in small pockets that can only accommo-

date a single molecule rather than an entire cluster. This

evidence strongly suggests that clustering low free-energy

docked conformations should again be beneficial in iden-

tifying the active site in proteins, particularly when con-

sidering ‘‘consensus sites’’, i.e., the surface regions in which

six or seven different small compounds cluster.

In this article we discuss the application of simple

clustering strategies to the above two problems. Considering

a free-energy surface with multiple minima, it is obvious that

conformations with free energies below a certain threshold

will form a number of clusters (see Fig. 1) and that most of

these clusters will remain largely invariant for threshold

values within a certain free-energy range. Accordingly,
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many docking and conformational search algorithms use

clustering simply for reducing the number of conformations.

We emphasize that clustering is much more central to the

strategies we describe here, because looking for large clus-

ters is the major tool of finding near-native conformations.

We show that clustering provides significant improvements

for the prediction of protein complex structures over the tra-

ditional re-scoring and ranking of the conformations using

some type of potential. More interestingly, we find that the

clustering radius is not arbitrary but reflects the dominant

terms of the interaction free energy and the size of the main

attractors in the binding free-energy landscape. Without any

a priori knowledge of the complex structure, we develop a

methodology to predict an optimal clustering radius and

show that this radius further improves the discrimination of

the native state. A rigorous clustering analysis should dif-

ferentiate between anecdotal (or artificial) clustering and one

due to the biophysical mechanism of the problem at hand.

METHODS

Protein-protein docking: screening, filtering, and
clustering a homogeneous sampling of the
binding free-energy landscape

Docked conformations are generated using the ClusPro server (18). The

algorithm evaluates a simple shape complementarity scoring function on

some 109 putative structures using the program DOT (19), of which the top

20,000 are retained for filtering by electrostatic and desolvation potentials.

The desolvation free energy is calculated using an atomic-contact potential

(20). The electrostatic interactions are obtained by a simple Coulombic

potential with the distance-dependent dielectric of 4r. Usually we retain N

structures with the lowest values of the desolvation free energy, and 3N

structures with the lowest values of the electrostatic energy (21). The reason

for retaining three times more electrostatic than desolvation candidates is

that electrostatics is highly sensitive to small perturbations in the coor-

dinates, and hence yields many more outliers than the slowly varying atomic-

contact desolvation potential. For typical applications, we found that N¼ 500,

implying a total of 2000 (500 desolvation and 1500 electrostatic) low free-

energy receptor-ligand structures, is an optimal number for retaining the

most true positives from the original 20,000 structures.

Clustering method

The clustering algorithm, used for ranking and discrimination of protein-

protein complex structures, clusters the 4N (default 2000) receptor-ligand

filtered structures according to the root-mean-squared deviations (RMSDs)

of the ligand atoms that are within 10 Å of any atom on the fixed receptor.

We use a simple greedy algorithm to find the structures with the largest

number of neighbors within a certain clustering radius RC (the default value

is RC ¼ 9 Å). The structure with the highest number of neighbors within the

selected cluster radius is considered as the center of the first ranked cluster.

The members of this cluster are removed, and we select the next structure

with the highest number of neighbors from the remaining ligands, usually

generating and analyzing the top 30 clusters. The clustering and docking

method has been implemented as a public server named ClusPro at http://

structure.bu.edu (18), and the algorithm has been used with success in the

first Critical Assessment of PRedicted Interactions (CAPRI) experiment

(22,23).

Pairwise RMSD distribution of
docked conformations

To analyze the clustering properties of free-energy filtered docked

conformations, we compute the pairwise RMSD histogram of all docked

conformations. To understand this simple analysis, consider a set of points in

the plane, and construct the histogram of pairwise distances, i.e., plot the

number of points that are within a distance r to any other point as a function

of r. If the points are randomly distributed, the plot is smooth with no

characteristic length scale. However, if the points cluster within a radius R
(see, e.g., Fig. 2 A), then the distribution will have a peak, followed by

a minimum, at ;r ¼ R. Fig. 2 B shows the distributions both for a set of

random points, and the set of points that cluster with a radius of five units.

FIGURE 1 Sketch of a free-energy landscape of protein-protein associ-

ation.

FIGURE 2 (A) Distribution of a random set of points forming clusters of

size 5 (any dimension) on a two-dimensional square surface. (B) Histogram

of pairwise RMSD between points (bin of size 1) for the points in A has a

bimodal distribution with the minimum between the two peaks correspond-

ing to the clustering radius of the data set; also shown is the histogram for

a random set of points (not shown).
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Computation of the optimal clustering radius in
protein docking

Choosing a clustering radius larger than R ¼ 5 units (the minimum between

the two peaks of the bimodal distribution in Fig. 2 B, and the actual size of

the clusters in Fig. 2 A) would result in clusters of smaller clusters, whereas

a smaller radius would split the actual clusters into smaller groups. However,

if the size of the cluster is indicative of an intrinsic property of the data set (as

we have argued in the Introduction), then the optimal clustering radius must

be at the minimum of the bimodal distribution expected from a data set that

aggregates into local clusters. This definition is quite general and should

apply to any given data set that forms clusters.

Clustering parameter D

For protein docking, a typical distribution of the pairwise RMSD of free-

energy filtered data sets of docked conformations is shown in Fig. 3. The

optimal clustering radius can readily be computed from distribution as the

minimum after the peak at ;7 Å. To quantify the quality of the clustering in

Fig. 3 we define the parameter D that measures the depth of the separation

between the two peaks of the distribution. If D ¼ 0, there is no separation of

length scales between clusters; if D ¼ 1, the separation of length scales and

clustering are optimal.

Protein mapping using organic solvents

Clustering is also used in computational solvent mapping, a powerful protein

binding-site analysis tool. The method of organic solvent mapping was

introduced by Ringe and co-workers (12,13), who determined protein

structures in aqueous solutions of organic solvents, and in each case found

only a limited number of organic solvent molecules bound to the protein.

When five or six structures of a protein determined in different organic

solvents were superimposed, the organic molecules tended to cluster in the

active site, forming consensus sites that delineated important subsites of the

binding pocket (12). Thus, the clustering of the probes that may differ in size

and polarity naturally occurs in the experiment. We have developed an

algorithm to map proteins computationally rather than experimentally (24–

26). The mapping of a protein starts with a rigid body search to place ligand

molecules at a large number of favorable positions using the docking

program GRAMM (Global RAnge Molecular Matching) (27). GRAMM

performs an exhaustive six-dimensional search through the relative inter-

molecular translations and rotations using a Fast Fourier Transform

correlation technique and a simple scoring function that measures shape

complementarities and penalizes overlaps. Again, a few thousand confor-

mations of each probe are retained for the refinement step that involves the

minimization of a free-energy function consisting of van der Waals, elec-

trostatics, and desolvation terms. Although the local minimization moves

the ligand conformation slightly away from the discrete states determined by

the grid, the changes are very small.

Clustering of small molecules

Similarly to the protein-protein docking, we filter the generated structures,

but in the case of small molecules this step also involves clustering. Initially,

the two most distant of the minimized probe conformations are designated as

hubs for clustering the remaining conformations. A new hub, the most

distant probe from the current hubs, is designated when necessary until all of

the probes are clustered such that the maximum distance between a cluster’s

hub and any of its members (the cluster radius) is less than half of the

average distance between all existing hubs. The minimized probe confor-

mations are grouped into clusters such that the maximum distance be-

tween a cluster’s hub and any of its members (the cluster radius) is smaller

than half of the average distance between all the existing hubs. Clusters with

,20 entries are removed. The clusters are ranked on the basis of their

average free energies ÆDGæi ¼ SjpijDGj, where pij ¼ exp(DGj/RT)/Qi and

Qi ¼ Sj exp(�DGj/RT) is a partition function obtained by summing the

Boltzmann factors over the conformations in the ith cluster only. For each

probe we retain a number (usually five) of the lowest free-energy clusters.

We note that the goal of clustering in this filtering step is simply to reduce

the number of isolated minima among the low free-energy conformation

retained for further analysis. The clusters of the retained clusters (called

consensus sites) are defined as the positions at which the clusters overlap for

a number of different probes. The position at which the maximum number of

different probes overlap will be referred to as consensus-site number 1, the

position with the next highest number of probes consensus-site number 2,

and so on (24).

RESULTS AND DISCUSSION

Clustering protein-protein docked conformations

Based on the biophysics of the protein binding process, the set

of low-lying free-energy receptor-ligand complexes are ex-

pected to cluster around low free-energy attractors. In prac-

tice, clustering might not occur near the bound conformation

since the expected binding free-energy funnel is often blurred

when sampling the space of receptor and ligand complexes of

independently resolved protein structures (unbound).

Comparing free energy versus clustering
ranking of docked conformations

To gauge the benefits of clustering alone on the prediction of

protein-protein complexes we have clustered a benchmark

set of docked conformations from Weng’s lab (28). The

conformations, which are publicly available at http://zlab.bu.

edu/;rong/dock/benchmark.shtml, were generated using the

software ZDOCK (29), which includes a scoring function

similar to that developed in Camacho et al. (21). Namely,

the data consists of a set of 2000 conformations ranked

FIGURE 3 Pairwise RMSD distribution of docked conformations for the

complex forming 1ATN. The clustering parameter D ¼ 1 � fmin/fmax, where

fmin corresponds to the depth of the minimum between the first and second

peak and fmax corresponds to the height of the first peak (see text).
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according to surface complementarity, Coulombic electro-

statics, and the atomic-contact potential’s desolvation potential.

Table 1 shows a direct comparison of the free-energy-based

ranking used by the program ZDOCK and the clustering

results of the same set of 2000 docked conformations using

ClusPro. The results (published in detail in Ref. 18) show that

clustering alone improves the discrimination of near-native

structures by a factor of 3 or more. We note that these results

consider protein structures to be rigid bodies. Table 1 includes

42 different protein complexes for which there was a relevant

number of hits within 10 Å RMSD from the native complex

structure. The clustering radius was set to RC ¼ 9 Å.

Strikingly, as long as there are at least 10 hits in the set of 2000

structures, ClusPro is always able to rank a near-native struc-

ture within the top 50 predictions.

Evidence of clustering in free-energy filtered
receptor-ligand complexes

To show that clustering is more than a simple averaging

procedure, we analyze the clustering properties of 2000 free-

energy filtered receptor-ligand complexes from several in-

teracting proteins as obtained by the default options of the

server ClusPro that includes the program DOT (19) for

screening surface complementarity. Fig. 4 shows the number

of ligands that are within a given distance of any other

ligand, measured in terms of binding site RMSD. Fig. 4 A
corresponds to the analysis of the top 200 complexes that

have the lowest desolvation free energies, and Fig. 4 B to the

top 200 complexes with the most favorable electrostatic

energies. As in Fig. 2, the distributions show the marker of

a data set that cluster around local basins. However, it is also

important to emphasize that real decoy sets are far noisier

than Fig. 2 A. Nevertheless, the plots in Fig. 4 also show that

far more docked conformations are within 5–10 Å RMSD

than would be expected from a random distribution. The

recurrent peak observed below 10 Å for both the desolvation

and/or electrostatic filtered data confirms that these free-

energy attractors effectively cluster docked conformations

around local free-energy minima. Strikingly, those com-

plexes that have no hits near the binding site tend not to have

the clustering peak—e.g., Target 9 (the LicT homodimer; see

Ref. 30) of CAPRI, for which the server failed to retain

complexes near the native complex structure.

The characteristic clustering radius—i.e., the minimum

after the first peak—varies between 5 and 10 Å. The fact that

sometimes clustering is observed in the desolvation free

energy and sometimes in the electrostatic free energy is

consistent with the complementarity of these interactions (8).

We conclude that the distribution of pairwise RMSD of free-

energy filtered structures generally reflects the clustering

around broad free-energy minima. The size of the peak

pertaining to intracluster RMSDs is directly proportional to

the quality of the discrimination by our method. For five of

the complexes in Fig. 4, ClusPro found a near-native ligand

conformation in the highest ranked cluster. Other complexes

ranked fourth- and seventh-best the cluster containing the

near-native ligand conformation. CAPRI Target 8 (Nidogen-

G3/Laminin; see Ref. 31) was ranked third. Due to the

relatively small and rather polar interface of Target 8, only

the clustering of the electrostatic energy (Fig. 4 B) produced

a discernible peak, whereas the clustering of the desolvation

free energy (Fig. 4 A) did not.

TABLE 1 Success rate for predicting a near-native

(\10 Å binding site RMSD) complex structure for a

set of 42 protein-protein complexes based on free energy

alone and after clustering using the server ClusPro

Successful

prediction

Ranking based on

free energy*

Ranking based

on clustering

Top 1 5% 31%

Top 10 14% 74%

Top 30 19% 93%

Top 50 31% 100%

*Based on GSC score in Chen and Weng (29).

FIGURE 4 Distribution of the ligand binding site RMSD of the best 200

(A) desolvation and (B) electrostatic receptor-ligand complexes as a function

of cluster radius (in Å) for four unbound-unbound complexes and two

CAPRI targets (bin size is 1 Å). The docked conformations were generated

by the ClusPro server (see Ref. 18).
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Typical cluster size is 9 Å RMSD for
protein-protein interactions

The size of the attractor at the binding site is ;9 Å, a distance

consistent with the range of the desolvation and electrostatic

interactions. The half-value of the desolvation potential is

reached at 6 Å atomic separation, vanishing at distances

larger than 7 Å. Similarly, the half-value of long-range

Coulombic interactions (distance-dependent dielectric 4r) is

;5 Å, slowly decaying to near-zero at ;10 Å (9). Fig. 4 A
shows that the size of the desolvation free-energy clusters is

;6–10 Å, suggesting the presence of relatively broad

hydrophobic patches. In all likelihood, desolvation forces

will dominate the binding process of these complexes, like

for the case of protease inhibitor complex 5cha-2ovo. The

clustering peak for the electrostatically filtered data in Fig. 4

B has a range between 5 and 7 Å, somewhat smaller than the

range for desolvation interactions. This is due to the rapid

decay of the distance-dependent electrostatic field, and also

due to the fact that, for unbound structures, the electrostatic

field is noisy. From the analysis of Fig. 4, we conclude that,

in average, the optimal clustering distance of desolvation and

electrostatic filtered complexes is 9 Å. We note that this is

the default clustering radius that we set for the automated

docked predictions in the ClusPro server.

Optimal clustering radius improves discrimination
of near-native docked conformations

The recurrent bimodal distribution observed in the clustering

of the pairwise RMSD of filtered low free-energy docked

conformations (Fig. 4) confirms that these conformations

indeed aggregate around local minima. Namely, they dis-

tribute around the free-energy landscape as in the sketch

in Fig. 2 A. Although we have already shown that cluster-

ing alone significantly improves the discrimination of near-

native structures, we now proceed to demonstrate that one

could do even better by extracting from the data set the op-

timal clustering radius that characterizes the free-energy

landscape.

Similar to the analysis presented in Table 1, we use

Weng’s benchmark of 2000 docked conformations of 40

independently crystallized receptor and ligand structures to

showcase how the optimal clustering radius can improve

discrimination of near-native structures. Fig. 5 A shows the

pairwise RMSD distribution for five complexes every 1 Å

(see Methods), and the data points are interpolated using

a cubic spline function. The pairwise RMSD is calculated on

1200 conformations corresponding to the top 300 desolva-

tion and three-times more (900) electrostatic complexes. As

suggested by Fig. 1, clustering too many structures (high free

energies) would only add noise to the procedure. On the

other hand, too few conformations might lead to many small

clusters. We have already established that keeping 2000 low

free-energy conformations led to a reasonable sampling of

the binding pocket (21). In Fig. 5 B, we show that, indeed,

the clustering property is maintained by keeping between

1000 and 2000 docked conformations.

Four of the complexes analyzed in Fig. 5 A show a clear

bimodal distribution, the first peak occurring for clustering

radius of ,9 Å. A fifth complex, PDB code 1BRC, shows

a plateau between 3 and 8 Å. The ligand in this complex

is known to have a distorted interface in the unbound

crystal structure (see, e.g., Ref. 32); thus it is not surprising to

see that docked conformations in this system do not cluster

well.

FIGURE 5 (A) Histograms of the pairwise RMSD of the top 1200 (900 best electrostatic and 300 best desolvation) conformations for different protein

complexes. Only the relevant region, ,15 Å, is shown. (B) Histograms of pairwise RMSD for different numbers of the top conformations of 1UDI complex.

The data points are fitted by a cubic spline interpolation.
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In Table 2, we show both the ranking of the best predictions

(,10 Å RMSD from the crystal) using the default clustering

radius of 9 Å (see details in Ref. 18) and the ranking based on

the optimal clustering radius as defined by the minimum of the

bimodal. Note that from plots like in Fig. 5, it is straightfor-

ward to compute the radius and clustering parameter D.

Clustering predictions using the optimal radius (ranging be-

tween 4 and 10 Å) yields better predictions overall than a

fixed radius (default 9 Å); the average ranking is 7 and 8.5,

respectively (excluding the outlier 2PCC). Moreover, the

deeper the separation between the peaks of the bimodal dis-

tribution is the better the predictions. In particular, for D $

0.4, the ranking of near-native predictions is much better for

optimal than for the default clustering radius, with an average

ranking in this case of 4.3 and 8.8, respectively. As the peaks

start to overlap and D decreases below 0.4, we observe only

a partial improvement.

Protein mapping using organic solvents

As described in Methods, computational solvent-mapping

places small organic molecules containing various functional

groups (i.e., molecular probes) on a protein surface and finds

favorable positions using empirical free-energy functions.

The goal of the analysis is to find the hot-spots of the protein

where the highest number of different organic probe mole-

cules cluster. Since such consensus sites, defined by the

largest clusters, are generally located in the ligand binding

sites of proteins, the method has been used for identification

and characterization of active sites (24–26,33).

Clustering of small molecular probes

Table 3 shows the top three consensus sites for 11 enzymes

that we have recently mapped. We list the total number of

different probes used for the mapping of each protein, the

number of clusters at the consensus sites, and the distance of

the center of the consensus site from the substrate-binding

site of the enzyme. According to this table, the largest con-

sensus site is located at the active site for all enzymes but

haloalkane dehalogenase (26). The latter binds very small

ligands, such as ethylene dichloride, and the binding site is in

the middle of a long and narrow channel. Since some of the

probes are bigger than the substrate, they are unable to enter

the channel, and we find the largest consensus sites at the two

ends of the deep internal channel by which the substrate must

traverse to the active site.

Evidence of clustering in docking of small
molecular probes

Fig. 6 shows docked conformations of several small mole-

cules (e.g., acetone, urea, phenol, isopropanol) and cyto-

chrome p450-cam (1dz4). One of the largest clusters is

located on top of the heme (drawn in yellow), with several

other clusters distributed around the molecule, as well as

some isolated probes. The clustering of small molecules is

again consistent with hits concentrating in favorable minima

as shown in Fig. 2 A.

The clustering analyses of the resulting docked structures

on two proteins, p450-cam (see Fig. 6) and lysozyme (2lym;

Table 3), is shown in Fig. 7. As was seen with the protein-

protein docking results, clustering again reveals a recurrent

peak below 2–3 Å RMSD. It is important to note that

GRAMM was used for the seven molecules docked to p450-

cam, and the multi-start simplex method, CS-Map (24), was

used for the nine probes docked to lysozyme (see Table 3).

TABLE 2 Ranking of best near-native prediction using the

default clustering radius of 9 Å and the optimal radius as defined

by the minimum of the bimodal distribution

Complex 9 Å rank Optimal rank Ratio

2PCC 42 48 0.745

1MEL 2 1 0.7

1ATN 2 1 0.617

1STF 1 1 0.615

1UDI 10 1 0.587

1AVW 1 1 0.587

2TEC 1 1 0.563

2BTF 7 3 0.561

2PTC 3 3 0.52

2KAI 25 8 0.514

1QFU 39 11 0.492

1UGH 5 1 0.489

1BRS 15 16 0.441

1MDA 13 12 0.431

2SIC 2 1 0.423

1BQL 6 3 0.406

1AHW 1 2 0.389

1CHO 1 1 0.384

1WQ1 1 3 0.383

1IAI 15 22 0.381

1TAB 11 8 0.364

4HTC 3 1 0.346

1NCA 1 2 0.343

1NMB 10 6 0.311

1BVK 4 11 0.304

2SNI 11 7 0.302

1CSE 9 2 0.286

1MLC 14 2 0.243

1SPB 1 1 0.208

1DQJ 26 37 0.206

1FBI 17 32 0.138

2JEL 6 13 0.108

1ACB 3 1 0.102

1JHL 30 29 0.098

1TGS 1 1 0.062

1BRC 1 1 0.033

1PPE 1 1 0.005

1WEJ 32 25 0

1DFJ 1 1 0

1CGI 1 1 0

Best clustering 10 cases 19 cases

Results are for Weng’s benchmark data set (see Ref. 28 for a detailed list of

the names and PDBs of the proteins involved). Near-native predictions are

defined as a ligand that is ,10 Å away from the crystal structure.
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Cluster size is 2 Å RMSD for small
molecule docking

As suggested by Figs. 6 and 7, small molecules tend to reside

in small crevices and pockets on the protein surface. This

surface complementarity yields very favorable van der

Waals interactions, which is the dominant term of the bind-

ing free energy. Hence, it is not surprising to find that the

characteristic cluster size revealed by the distribution of

clustered molecules is on the order of 2 Å RMSD. For cluster

radii larger than 5 Å, the sharp increase in the distribution

reflects the inclusion of intercluster RMSDs.

CONCLUSIONS

Clustering is one of the most powerful tools in computational

biology. The conventional wisdom is that events that occur

in clusters are probably not random. To a large extent,

experience has validated this assumption. However, often

enough one finds cases where researchers overestimate the

value of their correlations. In this article, we analyze cluster-

ing properties of docked protein structures. We show that

clustering docked protein conformations can significantly

enhance the discrimination of near-native docked conforma-

tions.

The most novel aspect of this article is that we show that

clustering is not a tool of last resort but in fact it is an intrinsic

property of a well sampled free-energy landscape. This is

quite evident from the recurrent bimodal distribution ob-

served in the histograms of the pairwise RMSD of docked

conformations generated by ClusPro/ZDOCK and compu-

tational mapping for protein-protein and protein-small mole-

cule docking, respectively. We show that this distribution,

which does not involve any biochemical information, is an

important property of a data set that clusters. The clustering

radius is consistent with the range of the interactions dom-

inating the binding process, and is well approximated by the

minimum between the two peaks of the bimodal distribution.

This radius leads to an optimal discrimination of nativelike

complex structures when the normalized depth between the

two peaks of the distribution D is larger than 0.4.

Our analysis strongly suggests the existence of many

structural neighbors around the native state and other local

free-energy minima. This clustering is not the result of the

particular computational method employed to sample the

FIGURE 6 Clustering of seven small molecular probes on the surface

of cytochrome p450-cam (1dz4). The active site is right above the heme

drawn in yellow. For each probe, we kept the 20 top free-energy structures.

TABLE 3 Number of different probes in the largest clusters

obtained by computational mapping

Enzyme PDB code

No. of

probes

mapped

Cluster

rank

No. of

probes in

cluster

Distance

to ligand

(Å)

2lym 8 1 7 2.3

Lysozyme 2 6 10.9

3 5 3.2

2tlx 4 1 4 0.6

Thermolysin 2 3 3.8

3 3 17.5

1ebg 6 1 6 0.4

Enolase 2 5 10.3

3 4 20.7

1rnt 6 1 7* 0.4

Ribonuclease T1 2 5 15.2

3 4 11.6

2ypi 6 1 5 0.5

Triosephosphate

isomerase

2 4 20.1

3 3 5.7

1fbc 6 1 7* 1.1

Fructose-1,

6-bisphosphate

2 6 0.5

3 6 10.8

1tng 6 1 6 0.3

Trypsin 2 5 17.1

3 5 15.3

Haloalkane

dehalogenasey

2dhc 6 1 7* 10.2

2 6 9.3

3 4 12.4

4 3 0.6

1dz4 8 1 8 0.6

Cytochrome

P450 Cam

2 5 10.5

3 3 20.7

1fag 8 1 8 0.8

Cytochrome

P450 BM3

2 8 17.3

3 6 9.4

1og5 8 1 5 0.4

Cytochrome

P450 2C9

2 4 13.1

3 4 9.4

*Two DMSO positions included in cluster.
yThe active site is located in the middle of a narrow channel and can

accommodate only the three smallest probes (Cluster 4). Clusters 1 and 2

are at the two ends of the channel.
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landscape, but in fact it is due to the biophysics of protein

association.
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