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ABSTRACT The docking field has come of age.
The time is ripe to present the principles of docking,
reviewing the current state of the field. Two reasons
are largely responsible for the maturity of the com-
putational docking area. First, the early optimism
that the very presence of the “correct” native confor-
mation within the list of predicted docked conforma-
tions signals a near solution to the docking problem,
has been replaced by the stark realization of the
extreme difficulty of the next scoring/ranking step.
Second, in the last couple of years more realistic
approaches to handling molecular flexibility in dock-
ing schemes have emerged. As in folding, these
derive from concepts abstracted from statistical
mechanics, namely, populations. Docking and fold-
ing are interrelated. From the purely physical stand-
point, binding and folding are analogous processes,
with similar underlying principles. Computation-
ally, the tools developed for docking will be tremen-
dously useful for folding. For large, multidomain
proteins, domain docking is probably the only ratio-
nal way, mimicking the hierarchical nature of pro-
tein folding. The complexity of the problem is huge.
Here we divide the computational docking problem
into its two separate components. As in folding,
solving the docking problem involves efficient search
(and matching) algorithms, which cover the rel-
evant conformational space, and selective scoring
functions, which are both efficient and effectively
discriminate between native and non-native solu-
tions. It is universally recognized that docking of
drugs is immensely important. However, protein–
protein docking is equally so, relating to recogni-
tion, cellular pathways, and macromolecular assem-
blies. Proteins function when they are bound to
other molecules. Consequently, we present the re-
view from both the computational and the biologi-
cal points of view. Although large, it covers only
partially the extensive body of literature, relating to
small (drug) and to large protein–protein molecule

docking, to rigid and to flexible. Unfortunately,
when reviewing these, a major difficulty in assess-
ing the results is the non-uniformity in the formats
in which they are presented in the literature. Conse-
quently, we further propose a way to rectify it here.
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INTRODUCTION

In this post-genomic era, research increasingly focuses
on proteomics. Experimental and computational efforts
are devoted to large-scale generation and analysis of
information derived from 3D structures and dynamics of
proteins, with the goal of scientific and commercial break-
through in drug discovery.1,2 Computational generation of
protein structures via modeling by homology and thread-
ing, and by ab initio prediction, and docking of a protein
structure with potential interacting partners are two
related steps in computational proteomics. While folding is
largely an academic practice (at least until this millen-
nium), docking has been heavily used in industry in
rational drug design. The principles of docking, and the
progress that has been made during the last decade have
been described.2–8 Here we attempt to look back on what
has been achieved and to suggest what might be tried in
the next steps. Due to the enormous size of the literature,
unfortunately, we are unable to cover all important contri-
butions in the field.
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Docking is a term used for computational schemes that
attempt to find the “best” matching between two mol-
ecules: a receptor and a ligand. The molecular docking
problem can be defined as follows: Given the atomic
coordinates of two molecules, predict their “correct” bound
association. In its most general form, no additional data
are provided. In practice, however, additional biochemical
information may be given, in particular knowledge of the
binding sites. Clearly, this considerably facilitates the
docking problem. Nevertheless, it should be borne in mind
that there are additional potential binding sites on the
protein surface. While it is assumed that the primary
(known) site would be the one to participate in the bound
conformation, there is no guarantee that this will be the
case.

The simpler problem in docking is referred to as “bound”
docking. It relates to computational schemes that attempt
to reconstruct a complex using the bound structures of the
receptor and the ligand. A “bound” structure is extracted
from a structure of more than one molecule, typically a
co-crystal of the receptor and the ligand. The goal is,
however, the more difficult predictive docking, also re-
ferred to as the “unbound” docking. The unbound problem
relates to computational schemes that attempt to recon-
struct a complex using the unbound structures of the
receptor and the ligand. An unbound structure may be a
native structure, a pseudo-native structure, or a modeled
structure. In this terminology, a native structure is the
structure of a molecule when it is free in solution, in its
uncomplexed state. A pseudo-native structure is the struc-
ture of a molecule when complexed with a molecule
different from the one used for the docking. For example, a
native structure exists for receptor 1 but not for ligand 1.
Ligand 1 was co-crystallized with receptor 2. The structure
of ligand 1 extracted from the complex with receptor 2 is a
pseudo-native structure. The use of modeled structures is
an even more challenging task.9

One of the first practical suggestions for docking came
from Crick who suggested that complementarity in helical
coiled coils could be modeled as knobs fitting into holes.10

Nevertheless, only in the mid-1980s did the docking field
begin to flourish. The first computational program devel-
oped for surface representation described it as a set of dots
spread on the van der Waals surface.11 While this method
is currently being used for a variety of purposes, it is not
the method of choice for docking. In this method, the
surface is described away from the actual van der Waals
surface, since the radius of a water sphere is added to the
atomic van der Waals radii. Consequently, the molecular
surface that is obtained smooths crevices into which
ligand/receptor atoms can intrude. A method for analyti-
cally calculating a smooth three-dimensional contour about
a molecule that is more suitable for such a purpose was
developed by Connolly.12,13 This program was crucial to
the development of docking algorithms. The deposition of a
large number of proteins in the Protein Data Bank (PDB14)
was equally important. The early algorithms were based
mainly on geometric criteria15–19 although a few energy-
based algorithms were also developed.20–23 The first pio-

neering and widely used docking program was DOCK,
conceived by Kuntz and his colleagues.15 This program,
and its attractive binding site description by intersecting
spheres, has inspired the computational docking field.
Goodford’s GRID has also been integrated into many
algorithms.22

There are three key ingredients in the docking: (1)
representation of the system, (2) conformational space
search, and (3), ranking of potential solutions. Docking
essentially simulates the interaction of the protein sur-
face. Therefore, the first question is how to define a protein
surface. The surface can be described by mathematical
models, such as for example by geometrical shape descrip-
tors or by a grid; Alternatively, it can involve treatment
(static or dynamic) of the protein frame, such as, for
example, rigid vs. flexible.

Docking involves two separate molecules. It initiates
from folded protein chains and ligand conformations. In
contrast, protein folding initiates from some non-native
protein conformations. Hence, docking is often viewed as
distinct from folding. Yet, while currently computational
prediction of protein structures largely addresses rela-
tively small, single domain proteins, for large multidomain
proteins, one faces the problem of domain docking. Such an
approach is consistent with experiment. Experimentally,
complementary fragments provide a system for studying
protein folding,24–27 consistent with intermolecular bind-
ing resembling intramolecular folding events.28–30 In-
tramolecular domain docking appears simpler owing to
chain linkage. However, here one needs to confront multi-
part docking, with consequently a large increase in the
number of possible arrangements. This problem is reminis-
cent of docking multicomponent, supramolecular assem-
blies. Additionally, protein “domains” are not necessarily
stable, and they may have low population times. Some
domains fold on a second domain template. This suggests
that, on average, they may be more flexible than entire
protein chains.

Just like in protein folding, solving the docking problem
also involves two components: an efficient search proce-
dure and a good scoring function. The two critical elements
in a search procedure are speed and effectiveness in
covering the relevant conformational space. On the other
hand, the scoring function should be fast enough to allow
its application to a large number of potential solutions
and, in principle, effectively discriminate between native
and non-native docked conformations. The scoring func-
tion should include and appropriately weigh all the ener-
getic ingredients. Hence, as in folding, the performance of
a particular docking program should not be viewed as
representing one complete piece. To solve the docking
problem, ideally, the best matching algorithms and scoring
schemes should be combined. Similar considerations and
division have recently been discussed.31–33

The three aspects of the docking are mutually interre-
lated: The choice of the system (surface) representation
decides the types of conformational search algorithms, and
the ways to rank potential solutions. Below, we review the
principles of the representation, available search algo-
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rithms, and scoring schemes. Based on these, we highlight
some potential promising approaches.

REPRESENTATION OF THE SYSTEM
Mathematical Models of Surface Representation

The basic description of the protein (or ligand) surface is
the atomic representation of exposed residues. However,
such a representation is usually used only when the
ranking is based on real potential energy functions (for
example, CHARMM’s). One example is the docking pro-
gram DARWIN, which communicates with CHARMM to
calculate the energy.34 In the MM/Grid docking approach,
the atomic details of the ligand and the receptor binding
site are simulated explicitly, while the other bulk portions
of system are represented as grids.35

More often, the surface is represented by its geometric
features. Connolly laid the foundation for protein surface
analysis. The Connolly surface consists of the part of the
van der Waals surface of the atoms that is accessible to the
probe sphere (contact surface) connected by a network of
convex, concave, and saddle shape surfaces that smooths
over the crevices and pits between the atoms. Based on the
Connolly analysis,12,13 the surface may be described by
sparse critical points,36,37 defined as the projection of the
gravity center of a Connolly face. In the docking program
ESCHER, the solvent-accessible surface from the Connolly
analysis is cut into parallel slices 1.5 Å thick, with each
slice transformed into a polygon to be used in a rigid
surface matching.38

To align the surfaces of two molecules in a complemen-
tary manner, we need to compute a rigid transformation
that superimposes the surfaces without allowing one mole-
cule to deeply penetrate, or overlap the other. To obtain
hypotheses for such transformations, it suffices to align a
triplet of ordered non-collinear points (congruent tri-
angles) from both molecules. However, it may happen that
there are no three independent matching point-pairs be-
tween the receptor and the ligand. For docking, the points
are those describing the molecular surfaces. These are
computed to accurately represent the maxima (holes) and
minima (knobs) of the shape function.39–41 Sparseness is
critical, since the complexity of the algorithm depends on
the number of points. A surface normal, associated with
each point, is also computed. Below, these points are
dubbed critical points. The docking strategy reduces to
matching only pairs of critical points with the additional
geometric information of their surface normals. In order to
compute a candidate rigid transformation, we need to
detect a pair of critical points in both molecules that share
the same internal distance, and, if superimposed, have
opposing surface normals. This reduces the number of
potential docked configurations, and concomitantly re-
duces the run-time complexity of the program.

In practice, Connolly’s MS-DOT program12,13 yields
discrete points along with three types of surface faces
representing the molecular shape. For each face an inter-
est point and a normal are computed. The interest point is
a cap, belt, or pit for convex, toroidal, and concave faces,
respectively.36,37 Figure 1 illustrates the interface of an

artificial complex and the surface match.37 The caps (red)
of the top moiety (lemon) and the pits (dark blue) of the
bottom moiety (brown) are coupled in quality pairing.
Alternatively, “critical points” and their associated surface
normals, based on solid angles, can be computed.42,43

Given the interest points, a 3D rotation and translation of
the ligand is sought, such that a large portion of its surface
“cap” interest points are in the vicinity of corresponding
receptor surface “pit” interest points, with normals that
are (almost) antiparallel. Since the tips of the surface
normals provide additional critical point-associated points,
the complexity of the docking using the Geometric Hash-
ing algorithm reduces from O(n4) to O(n3), where n is the
number of interest points. In practice it is still better, since
only critical points pairs within a certain distance are
taken.42–44 This yields very fast execution times, on the
order of minutes for even large protein–protein docking.
We further note that, in principle, the Geometric Hashing
can handle any type of molecular surface representation.
Table I lists the matching times (in minutes, on a 586 PC
clone, running at 133 MHz) for the Geometric Hashing-
based rigid-body programs, for the bound, complexed
(Table Ia) and unbound (Table Ib) protein–protein dock-
ing. The values are taken from Norel et al.40

As mentioned ealier, surface representation relates to
conformational search and ranking of potential solutions.
Physicochemical features of the protein surface are added
into the purely geometrical description. For example,
colored negative images45 have polar, nonpolar, and a
changeable portion. The negative image is a mold of a
putative ligand and is generated in two steps: (1) all
possible spheres within the binding interface are con-
structed, and (2) the spheres are reduced to a relatively
small, representative set.45 Protein surface may also be
fitted with spherical harmonic functions to include electro-
statics.46 GRASP uses the Poisson-Boltzman equation to
map the receptor electrostatic potential.47

Rigid to Flexible: Types of Conformational Changes
Observed Between the “Bound” and “Unbound”

Predictive docking is far more complex than bound
docking. The additional complexity derives from conforma-
tional changes that take place between the bound and
unbound structures. There are three types of conforma-
tional changes. The first involves small-scale, fast motions
as observed, for example, in ensembles of NMR conform-
ers. The second derives from large-scale, slow domain
motions. The third is the outcome of protein “disorder.” In
such a case, owing to larger protein flexibility, no coordi-
nates are obtained in either the X-ray or NMR structures.
Here the population time of the native conformer is too low
to enable experimental detection.48 Typically, in such
cases the unbound molecule is either locally or globally
disordered. However, binding stabilizes the bound con-
former, shifting the equilbrium in its direction. In such
cases, the native state has a small hydrophobic core, or the
molecule (or its disordered domain) contains uncompen-
sated buried charges.
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With respect to small-scale motions, Betts and Stern-
berg examined 12 cases of multiple X-ray structures.49 The
rmsd (root mean squared deviation) of the C�-atoms
ranged between 0.1 and 0.5 Å, whereas side-chain atoms
ranged between 0.5 and 1.6 Å. These data are probably an
underestimation of solution flexibility movements, since in
the analysis residues with poor electron density or B factor
greater than or equal to 50 A2 were excluded from the
calculations.

Movements of the interface may be greater than in other
exposed parts of the structure. This is consistent with the
finding that proteins frequently display regions of instabil-
ity around the binding sites. Freire and his colleagues50–53

have shown that binding sites are typically part rigid and

part flexible. Further, conformational differences between
two bound structures are likely to be less pronounced than
conformational differences between bound and unbound
structures. Betts and Sternberg confirmed the first predic-
tion but neither confirmed nor refuted the second.49 Exami-
nation of C� and side-chain atom movements during
complex formation in 39 complexes has shown that half
have values no larger than the differences between differ-
ent unbound structures of the same protein. However, the
extent of the movements was greater in the interface than
in other exposed parts of the structure. Further, there are
cases where the unbound structure could not be crystal-
lized. Interestingly, by examining residue perturbation
upon binding, Baysal and Atilgan54 have recently shown

Fig. 1. The interface of an artificial complex and the surface match.37 The caps (red) of the top moiety
(lemon) and the pits (dark blue) of the bottom moiety (brown) are coupled in quality pairing. (Reprinted from J
Mol Graphics, Vol 14, S.L. Lin, R. Nussinov, Molecular recognition via face center representation of a molecular
surface, pp 78–90, © 1996, with permission from Elsevier Science)
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TABLE I. Matching Times (in Minutes, on a 586 PC Clone, Running at 133 MHz) for the
Geometric Hashing-Based Rigid-Body Program†

pdb Receptor name
No. of
atoms Ligand name

CPU (min)

No. of
atoms Docking Rank/cluster

RMSD
(Å)

a: Protein-protein complexes
1 1cho Alpha-chymotrypsin 1-146 (E) 1,047 Alpha-chymotrypsin 149-245

(E)
701 1.7 1 out of 471 0.54

2 1fdl IG*G1 fab fragment (LH) 3,306 2-lysozyme (Y) 1,000 8.6 20 out of 2,181 1.50
3 1tec Thermitase eglin-c (E) 2,003 Leech (I) 826 2.2 1 out of 1042 1.18
4 1tgs Trypsinogen (Z) 1,645 Pancreatic secretory trypsin

inhibitor (I)
496 2.8 1 out of 831 1.14

5 2hfl IG*G1 fab fragment (LH) 3,227 Lysozyme (Y) 1,000 10.4 1 out of 2,166 1.51
6 2kai Kallikrein a (AB) 1,798 Bovine pancreatic trypsin

inhibitor (I)
438 2.2 11 out of 1,227 1.17

7 2mhb Hemoglobin � chain (A) 1,068 � chain (B) 1,133 7.2 1 out of 663 0.70
8 2ptc Beta-trypsin (E) 1,628 Pancreatic trypsin inhibitor (I) 453 2.6 1 out of 1,027 0.59
9 2sec Subtilisin carlsberg (E) 1,919 Genetically-engineered n-acetyl

eglin-c (I)
529 1.8 1 out of 1,114 2.08

10 2sni Subtilisin novo (E) 1,937 Chymotrypsin inhibitor (I) 512 2.2 1 out of 1,367 1.07
11 2tgp Trypsinogen (Z) 1,628 Pancreatic trypsin inhibitor (I) 453 1.6 1 out of 828 0.59
12 3hfm IG*G1 fab fragment (LH) 3,293 Lysozyme (Y) 1,000 10.7 1 out of 2,274 0.76
13 4cpa Carboxypeptidase 1,536 Potato carboxypeptidase a

inhibitor (I)
275 2.1 3 out of 1,310 1.02

14 4hvp HIV-1 protease chain A 745 Chain B 745 1.4 1 out of 411 2.06
15 4sgb Serine proteinase (E) 1,309 Potato inhibitor pci-1 (I) 379 .09 5 out of 591 1.88
16 4tpi Trypsinogen (Z) 1,628 Pancreatic trypsin inhibitor (I) 455 2.1 1 out of 889 0.52
17 1abi Hydrolase alpha thrombin (H) 2,039 Chain L 265 6.2 1 out of 773 0.56
18 1acb Hydrolase alpha-chymotrypsin

(E)
1,769 Eglin C (I) 522 3.8 1 out of 1,121 0.94

19 1cse Subtilisin carisberg (E) 1,914 Eglin C (I) 522 1.7 2 out of 1,024 1.32
20 1tpa Anhydro-trypsin (E) 1,628 Trypsin inhibitor (I) 454 2.6 1 out of 950 0.23
21 2sic Subtilisin (E) 1,938 Subtilisin inhibitor (I) 764 3.2 1 out of 1,229 1.11
22 5hmg Influenza virus hemagglutinin

(E)
2,532 Chain F 1,417 17.7 1 out of 329 1.09

23 6tim Triosephosphate isomerase
chain A

1,883 Chain B 1,883 11.0 1 out of 351 0.50

24 8fav Fab fragment from IGG1 chain
A

1,544 Chain B 1,635 2.3 1 out of 93 1.97

25 9ldt Lactate dehydrogenase chain A 2,565 Chain B 2,565 24.1 1 out of 67 2.52
26 9rsa Ribonuclease chain A 951 Chain B 951 2.9 21 out of 511 1.30

b: Unbound cases
1 1hfm-1lym(A) IG*G1 fv fragment 1,714 Lysozyme (A) 1,001 11.8 537 out of 11,475 2.97
2 1hfm-1lym(B) IG*G1 fv fragment 1,714 Lysozyme (B) 1,001 4.0 281 out of 10,685 2.80
3 1tgn-4pti Trypsinogen 1,621 Trypsin inhibitor 453 3.3 53 out of 2,619 1.85
4 1tgn-5pti Trypsinogen 1,621 Trypsin inhibitor 464 5.3 1 out of 3,453 1.22
5 1tgn-6pti Trypsinogentrypsinogen 1,621 Trypsin inhibitor 458 3.2 2 out of 1,455 1.75
6 1tld-4pti Beta-trypsin 1,629 Trypsin inhibitor 453 2.5 16 out of 2,659 5.22
7 1tld-5pti Beta-trypsin 1,629 Trypsin inhibitor 464 3.6 619 out of 3,471 4.71
8 1tld-6pti Beta-trypsin 1,629 Trypsin inhibitor 458 2.5 40 out of 1,512 2.18
9 2hfl-1lyz IG*G1 fab fragment 3,220 Lysozyme 1,001 10.1 110 out of 10,989 1.79

10 2hfl-6lyz IG*G1 fab fragment 3,220 Lysozyme 1,001 12.6 65 out of 10,733 1.08
11 2pka-4pti Kallikrein a 1,799 Trypsin inhibitor 453 1.9 29 out of 3,184 3.29
12 2pka-5pti Kallikrein a 1,799 Trypsin inhibitor 464 3.1 9 out of 4,222 1.21
13 2pka-6pti Kallikrein a 1,799 Trypsin inhibitor 458 1.9 27 out of 1,756 1.82
14 2ptn-4pti Trypsin 1,629 Trypsin inhibitor 453 2.8 9 out of 2,156 3.53
15 2ptn-5pti Trypsin 1,629 Trypsin inhibitor 464 4.0 34 out of 2,880 3.11
16 2ptn-6pti Trypsin 1,629 Trypsin inhibitor 458 5.5 56 out of 1,200 1.28
17 2sbt-2ci2 Subtilisin novo 1,934 Chymotrypsin inhibitor 521 2.8 92 out of 3,582 2.62
18 5cha(A)-2ovo Alpha-chymotrrrypsin (A) 1,735 Ovomucoid third domain 418 1.7 11 out of 2,194 1.49
19 5cha(B)-2ovo Alpha-chymotrrrypsin (B) 1,736 Ovomucoid third domain 418 3.1 2 out of 2,289 1.64

†a: The bound, complexed cases, and b: unbound protein–protein docking. The values are taken from Norel et al. (1999).40 In either case, no
additional biochemical information has been incorporated. The binding sites are assumed to be unknown. Entire molecular surfaces are
considered. The only input information are the atomic coordinates, taken from the PDB (Bernstein et al., 1997). In the scoring/ranking procedure,
carried out following the matching stage, the binding sites are still assumed to be unknown. Hence, this is the most general approach. This is a
rigid-body approach. Molecular flexibility is implicitly taken into account through a certain allowance (though penalized) intermolecular
penetration. The first column gives the PDB file name; the second gives the receptor name, followed by the number of atoms; the fourth column
lists the ligand name followed by the number of atoms. The sixth column lists the CPU times for the matching stage. As can be seen, the longest is
25 min, with most complexes under 10 mins. The next column gives the rank of the lowest (under 5 Å) RMSD solution, and the number of clusters
(i.e., equivalent to the number of solutions, as all similar solutions are grouped into a cluster). The last column gives the RMSD of the top ranking
solution.
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that the stabilization of the binding region is accomplished
at the expense of loss of stability in other parts of the
structure. While the rmsd deviations between the bound
and unbound structures (of chymotrypsin inhibitor 2) are
small, residue fluctuations and stability differ signifi-
cantly in their response to the binding. The packing
density changes only at the binding loop. However, residue
fluctations changed in the rest of the protein.

With respect to the second type of conformational change,
domain movements in proteins have been classified into
shear and hinge bending motions.55 “Induced fit” involves
such hinge-type motion. It was originally suggested in the
late 1950s.56 Since then it was illustrated in a large
number of cases, e.g. in enzyme-inhibitor,57 DNA-protein
and antigen-antibody binding. Hinge-bending motions are
low-energy transitions, with hinge-bent conformers popu-
lating the solution around the native state. In the presence
of the ligand, the conformer that binds is the one whose
conformation is most favorable. Binding leads to a popula-
tion shift, propagating the binding reaction. Hinge motion
might be critical for predictive docking. In antibody-
antigen, the initial binding to solvent-exposed residues
may promote local side-chain displacements and thereby
allow the participation of other, previously buried resi-
dues. The crystal structure of �4Gal-T1 with bound UDP
shows a conformational change with a large 20-Å loop
movement with concomitant changes in residue burial,
related to substrate binding.58

The third type of conformational change observed upon
binding is the most drastic “disordered” to “ordered.”
Shoemaker et al. have recently proposed a ‘fly-casting’
binding mechanism.59 In vivo, a large fraction of the
proteins are in an unfolded, “disordered” state,60 illustrat-
ing that folding and function are coupled. Shoemaker et al.
have suggested that a relatively unstructured protein
molecule can have a greater capture radius for a specific
binding site than the folded state with its restricted
conformational freedom.59 In their calculations, the in-
creased capture radius operates by exploiting the avail-
able folding free energy. Such a mechanism should help in
avoiding metastable non-specific bound complexes, which
may arise from the ruggedness of ligand–protein land-
scape. This binding case resembles protein folding (on a
template).

The computational procedures inherent to docking are a
function of the extent of flexibility that they attempt to
address. These can be classified into three levels by their
degree of approximation61: (1) Rigid body docking. Rigid
body is a highly simplistic model that regards the two
proteins as two rigid solid bodies. (2) Semi-flexible dock-
ing. The semi-flexible model is asymmetric; one of the
molecules, usually the smaller ligand, is considered flex-
ible, while the receptor is regarded as rigid. (3) Flexible
docking. Both molecules are considered flexible, although
clearly the extent of flexibility of either (or of both) is
necessarily limited, or simplified. Mangoni et al. have
carried out docking of a flexible ligand to a flexible receptor
via molecular dynamics simulation,62 using an explicit
water model. This feat has been enabled by an enhanced

method: While most of the simulation was in the standard
way, the center of mass of the protein was heated to a
higher temperature, giving it a higher velocity. This
yielded rapid additional sampling, however, with largely
relevant conformations.

In a classical sense, docking schemes are divided into
rigid body and flexible algorithms. Owing to this division,
docking papers (and algorithms) are frequently separated
into protein–protein and protein–small molecule (or pro-
tein–drug docking). The underlying notion in such a
classification is that since drugs are smaller molecules,
they are likely to undergo larger conformational fluctua-
tion. Furthermore, given their smaller size, this is compu-
tationally affordable, as compared to the large protein–
protein docking. Nevertheless, for both types, docking
algorithms display a spectrum of flexibility. Rigid docking
handles a certain extent of surface variability by allowing
some inter-molecular penetration. At the other extreme,
for small molecules, depending on their size, one can allow
motion on (almost) every ligand bond. Until very recently,
even when allowing a large extent of flexibility for drug
docking, typically the receptor has been held rigid, or with
only a limited extent of flexibility, largely at the binding
site. However, the last few years have seen a revolution in
concepts and approaches addressed at solving the molecu-
lar docking problem. As in folding, these largely derive
from considerations of populations and ensembles. Hence,
by resorting to concepts derived from energy landscapes
and statistical mechanics, and employing pre-generated
and recombined ensembles rather than single bond stretch-
ing and bending, receptor flexibility is beginning to be
handled in small molecule-docking.63 As outlined below,
similar integrated approaches can also be applied to
flexible protein–protein docking. Similar concepts have
recently been presented by Carlson and McCammon for
drug design.7

The relevance of using ensembles is also indicated in
recent studies showing that even apparently specific recep-
tors bind a range of ligands of different sizes, shapes, and
composition, often with higher affinities than the presum-
ably specific ligand.64–67 Current data suggest that they
preferentially bind at the same binding site. This is not
surprising. Proteins exist in a range of conformational
substates, with low-energy barriers separating them. Dif-
ferent ligands will associate with the most favorable
conformers.30,68,69 This suggests the important role of
hinge-bending, large-scale domain (or loop) motion.58 It
further suggests that binding sites may be distinguished
from other sites on the protein surface by their enhanced
flexibility.52,54 Hence, analysis of the interactions between
biological molecules cannot be reduced to the description of
(static) molecular structures. Integrated functional ap-
proaches need to consider the binding partner and the
time component of the interaction.69,70 The function of a
protein and its properties are decided not only by the static
folded three-dimensional structure, but by the distribution
and redistributions of the populations of its conformational
substates under different (physical or binding) environ-
ments.30,68,71 Such a mechanism provides multiple path-
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ways and allows a single molecular surface to interact with
numerous structurally distinct binding partners, accommo-
dates mutations through shifts in the dynamic energy
landscape, and as such is evolutionarily advantageous. A
ligand will similarly change the environment, affecting the
(preexisting) most populated state of the protein.72 Com-
bined, these point to the clear advantages of using en-
sembles in docking, and to the need to consider drug
(ligand, inhibitor) diversity.73 Furthermore, the existence
of multiple binding modes has to be accounted for in
predictions of binding affinity.74

Flexibility can be simulated in many different ways. One
of the most rigorous methods is by Lamb and Jorgensen,75

who calculate the free energy of the system. While highly
reliable, producing accurate results (consistent with experi-
ment, up to 1 kcal/mol), they are too slow for extensive
ligand docking. Luty et al.35 have simplified the simula-
tion by employing an implicit solvent model. Most of the
protein was held rigid, with only the binding site and the
ligand sampled. They handled the border zone between the
rigid and flexible protein layers using a small buffer region
next to the rigid (crystal coordinate) part with a small
harmonic potential. This allowed a relatively rapid simula-
tion of the docking, however still with limited sampling.
Rigid docking has the advantage of speed, being able to
explore the entire receptor and ligand surfaces, and per-
forming database docking. In such approaches, flexibility
is handled through a ”soft” belt into which atoms from the
second molecule can penetrate40–44,76,77 reducing drasti-
cally the complexity. In Vakser et al.’s study of low-
resolution recognition of protein-protein complexes,78 the
rigid docking of low-resolution structure essentially at-
tempts to simulate the average effects of the conforma-
tional flexibility.

Computational Approaches to Presentation of
Protein Flexibility

Proteins can be docked as rigid bodies. Molecules, just
like any other rigid body, have six degrees of freedom:
three rotational and three translational. For some cases,
the rigid body approximation is justified by comparing the
X-ray structures of complexes with those of their unbound
free components.79 Najmanovitch et al.80 have shown that
in most cases only a few side-chains change their conforma-
tions in the active site. However, for many other known
cases this assumption is not valid. For example, hirudin
undergoes a large structural change upon complexation
with thrombin.81 Large localized rearrangements at the
protein surface are frequent, especially for large flexible
amino acid chains.82

Implementing full conformational flexibility into a search
stage, separately docking a large number of conformers, is
infeasible. A reasonable approach is to take account of
ensembles of populations, generated prior to the docking,
and dock the ensemble rather than single conformers.
Depending on the strategy, docking an ensemble high-
lights the more conserved regions by, for example, assign-
ing these larger weights, whereas lower weights maybe
given to regions of space visited more rarely. Experimen-

tally, ensembles can be assembled by collecting all crystal
structures (unbound, or bound to different ligands), or
using NMR conformers. There are two systems where a
large number of structures have been determined. The
first is the HIV-1 protease, and the second is DHFR
(dihydrofolate reductase). Over 86 crystal structures have
been determined for HIV-1 in PDB14 and over 50 struc-
tures are available in the NCI HIV protease database.83,84

Additionally, an NMR conformer ensemble85 is present in
the PDB. A large body of inhibitors exist and combinatorial
libraries are also available.86,87 For DHFR, there are three
sets of NMR ensembles88 in the PDB in addition to near 80
crystal structures with good (2.5 Å or better) resolution.

Recently, Philippopoulos and Lim89 have compared an
ensemble of Escherichia coli ribonuclease H1 (RNase H1)
conformers derived from NMR experiments both with an
ensemble obtained from molecular dynamics simulations,
and with two X-ray structures. They have shown that the
15 conformers of the NMR ensemble sample more confor-
mational space of the RNase H1 than the 1.7-ns molecular
dynamics simulations. Further, multiple crystal struc-
tures may cover more space than sampled in a 1-ns MD
trajectory.90 The collection of crystal (or NMR) structures
can be used in the simulations to enhance the conforma-
tional sampling. For those cases where there are no
experimentally determined (NMR) ensembles, an exten-
sive coverage of conformational space can be achieved
through computational sampling. Protein ensembles can
be generated by molecular dynamics by random thermody-
namic sampling91 or, for example, by genetic algo-
rithms92–94 or through multiple MD trajectories.90

Several groups have superimposed protein conforma-
tions, with the goal of structure-based drug discovery.
Among the first are Knegtel et al.95 who have used a
composite grid incorporating multiple crystal and/or NMR
structures of protein–ligand complexes. Protein conforma-
tions were superimposed using residues at/near the bind-
ing sites. A grid was calculated for each conformer of the
set, with subsequent averaging of all grids to obtain a
picture of the binding site. Using either simple or weight-
averaged grids improved the accuracy of the identification
of known inhibitors. Docking has been carried out using
DOCK on several systems, HIV protease, ras p21, uteroglo-
bin, and bovine retinol binding protein. However, while
several protein conformations are taken into account, the
combinatorial nature of explicit conformations has not
been considered.63 In a second approach, Sudbeck et al.96

have used nine crystal structures of inhibitors complexed
with the HIV reverse transcriptase, superimposing by the
most stable region. The subsequent superpositioning of
the inhibitors allowed them to create a composite map of
the binding site. Small molecules were docked into a single
receptor binding site, using conjugate gradient minimiza-
tion of ligands, and of atoms of the receptor within 5 Å of
the ligand. A subsequent experimental test confirmed two
highly potent new inhibitors out of their solutions. In a
third approach, Broughton97 used MD simulations to
generate conformations of protein–inhibitor complexes. As
in the first approach, the structures were superimposed,
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with the inhibitor serving as the reference. Weight-
averaged single grids yielded the average grid used for the
docking. The FLOG code98 was used for the docking
purpose. Most recently, in a fourth approach, Claussen et
al.63 have introduced FlexE. Here, the authors have
averaged conserved coordinates, rather than using grids.
Flexible side-chain orientations were retained as a set, as
in a rotamer library. FlexE is able to mix rotamers taken
from the superimposed structures, creating new combina-
tions. This fast and attractive method has been tested on
aldose reductase, �-monorcharin, carboanhydrase II, car-
boxypeptidase, DHFR, isocitrate dehydrogenase, mande-
late racemase, ricin, seryl-tRNA synthase, and trypsin.
Excellent results were obtained with this method. It also
allows for ligand flexibility.99 However, the ligands docked
by FlexE were in the complexes used to extract the protein
structures. While some loop motions are captured by this
method, domain motions cannot be handled. Bouzida et
al.100 have actually acted on the premise that a protein
exists in multiple conformations, with the ligand binding
to the most favorable of these.72 Their procedure involves
docking of a ligand to every protein conformer, scoring
each. Two different ligands were docked to ten rigid HIV-1
protease crystal structures, using MC simulated anneal-
ing minimization. A soft scoring function further implicitly
addressed the enzyme surface flexibility. Their findings
were interesting: Whereas the first ligand was observed to
bind most favorably to one particular conformer, the
second bound practically equally well four enzyme confor-
mations. This study shows the importance of using en-
sembles, and the preferential ligand binding. Unfortu-
nately, such an approach is too computationally expensive
to allow large-scale docking experiments, particularly if
the number of conformers is large.

Movements of domains with respect to each other are
also essential in simulating protein flexibility. An efficient
way of docking, allowing domain motions, has been pre-
sented by Sandak et al.,101–105 who have docked a ligand
onto a receptor surface, allowing hinge-bending move-
ments of domains, subdomains, or substructural parts. All
angular rotations are allowed, while still avoiding a confor-
mational space search. By picking a hinge point, the
molecule is divided into two parts. However, rather than
dock each of the molecular parts separately, with subse-
quent reconstruction of the consistently docked molecules,
all parts are docked simultaneously. Furthermore, the
position of the hinge is utilized from the start. Like pliers
closing on a screw, the receptor automatically closes on its
ligand. Movements are allowed either in the ligand or in
the larger receptor, hence mimicking the so-called “in-
duced” molecular fit. In principle, more than one hinge can
be allowed in the docking. Hinge-bending movements are
frequently observed when molecules associate. The move-
ments can involve entire domains, subdomains, loops,
helices, or occur between any groups of atoms connected by
flexible joints. Sandak et al. have implemented the hinges
at points and at bonds. By allowing full 3D rotations
around a point, rather than around a bond, several rota-
tions about (consecutive or nearby) bonds are implicitly

taken into account. Nevertheless, if required, the complete
rotation about a point can be restricted to bond rotation.
Several simultaneous hinges may also be allowed. By
allowing several hinge motions to occur at the same time,
we simulate the cumulative effect of larger conformational
flexibility or of multiple mutations, each introducing a
limited motion. Additionally, several hinge points are
examined in nearby (non-adjacent) residues, still obtain-
ing similar docked configurations. In practice, so far the
algorithm has been implemented to enable two simulta-
neous hinges. The algorithm was applied to a number of
bound and unbound molecular configurations, achieving
fast matching (recognition) times of their surfaces, for both
rigid and flexible docking. As in the rigid-body case, the
atomic coordinates are taken from the PDB. The location
of the hinge has been determined by a comparison of
similar structures in different, i.e., “open” and “closed”
conformations. Nevertheless, in this efficient robotics-
based method, while the domains are allowed to move with
respect to each other, the domain (or part) itself is held
rigid.

A more modest simulation of protein flexibility involves
side-chain flexibility.106,107 Determination of side-chain
conformations can be modeled according to a rotamer
library.108 Rotamers are usually defined as low-energy
side-chain conformations. Certain rotameric states will be
higher in energy than others because of steric interactions
that force the side-chain to twist out of the way of
neighboring atoms, inflicting a high dihedral energy on the
residue. These interactions can be “backbone-indepen-
dent,” that is, not depending on the conformation of the
local backbone of the residue. Alternatively, they can be
“backbone-dependent,” depending on the local backbone
conformation as determined by the backbone dihedrals �
and �.109 Leach106 used single conformations for Gly, Ala,
and Pro. Fourteen side-chains were given 3–10 rotamers,
and Met, Lys, and Arg sampled 21, 51, and 55 rotamers.
The advantage of utilization of rotamers is the relative
speed in the sampling, and avoiding minimization barri-
ers. Leach and Lemon107 have recently used a dead-end
elimination and the A* algorithm to explore the side-chain
conformational space. The advantage of such an algorithm
is that it allows diverse sampling of conformations not
present in the protein dataset that is used. Schaffer and
Verkhiver110 use large rotamer libraries. However, their
procedure of generating likely side-chain conformations
and minimizing docked structures using the receptor
binding site side-chains while allowing also local backbone
atoms optimization is fast. Apostolakis et al.111 have
docked ligands in a flexible binding site using conjugate
gradient minimization, with the non-bonded interactions
gradually switched on during the process. These were
followed by short MC minimization runs on the more
promising candidates. The nice feature in such a proce-
dure is that initially there may be some receptor–ligand
overlaps. These are handled as the van der Waals terms
and are gradually switched on.

Small-scale simulation of protein flexibility can be per-
formed by a surface belt of nonpenalized penetration
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area.38,77,112,113 Zhao and colleagues114 have analyzed a
dataset of paired protein structures, which have multiple
high quality uncomplexed structures available in the PDB.
They have quantified side-chain flexibility, obtaining a set
of residue- and environment-specific confidence levels,
which describe a range of motions. These can be used to
evaluate models, and as a metric in docking. When protein
flexibility is modeled, inclusion of intra-molecular overlaps
in a scoring function might be beneficial in a search of
self-consistent solutions.101–105,115

Computational Approaches to Presentation of
Ligand Flexibility

Simulating ligand flexibility is also a computationally
expensive process. Lomber and Shoichet116 note that the
number of possible ligand conformations rises in propor-
tion to the power of the number of rotatable bonds. They
calculate that for an organic molecule with ten rotatable
bonds, the number of possible conformations is 59,049, if
only three minima are considered per bond. However,
allowing six minima per bond yields 3.48 � 109 conforma-
tions. To address the problem, one approach involves
Monte Carlo simulation and simulated annealing to sample
the ligand flexibility.23,117–120 In Goodsell et al.,23 the
binding site is rigid, whereas in Stoddard and Koshland119

some binding site flexibility is allowed.
To reduce the computational time, alternate methods

have been devised, which divide the ligand into fragments,
and incrementally build it in the receptor binding site.
In other approaches, the fragments are docked sepa-
rately, and consistent fragment-docked solutions are
joined.19,121–128 In general, the drawback of incremental
growth is that one frequently needs to resort to an
exhaustive grid-search of each added fragment. On the
other hand, docking each part separately and searching for
consistent solutions overlooks a piece of information that
is available a priori, namely, the fact that the two frag-
ments are linked, and that their linking point is known. A
more efficient incremental method is FlexX.99 Here the
authors model conformational flexibility of ligands by
using a set of minimized geometries129 derived for the
Cambridge Database. Up to 12 low-energy torsion angles
were assigned to each bond. FlexX then automatically
forms a set of alternative fragments by selecting single
components or their combinations. To dock each fragment,
triples or, if needed, pairs of interaction centers are used.
Owing to geometric ambiguity, multiple placements are
generated by rotations around the axis defined by the
interaction points and centers. Domain movements can be
performed by hinge bending.101–105 This robotics-based
approach is very fast, and uses all the information simulta-
neously in the docking process. There is no need to rotate
bonds. However, there are two drawbacks in this method:
The hinges need to be pre-picked, and each part should be
informative enough to be recognized.

Genetic algorithms130–132 have been used to generate
conformers. Genetic algorithms work by representing the
ligand conformations in a modular way, using operations
similar to mutations and crosses. The quality of the results

is a function of the starting genes, the number of evolution-
ary events, i.e., the mutations and crosses, and the scoring
function to pick the more favorable conformers. Using
GOLD, Jones et al. have successfully tested their method
on over 100 complexes extracted from the PDB.132 This list
was selected on the basis of pharmacological interest.
However, genetic algorithms are too slow for extensive
flexible drug docking. Morris et al.133 have developed a
new, Lamarckian-based genetic algorithm, and incorpo-
rated it into AutoDock. This algorithm predicts the docked
conformations of flexible ligands in rigid macromolecular
targets. In the Lamarckian model of genetics, environmen-
tal adaptations of an individual phenotype are reverse
transcribed into its genotype, becoming a heritable trait.
They have further incorporated into it a new scoring
function that estimates the free energy change upon
binding. The energy function was calibrated on a set of 30
known complexes, with experimentally determined bind-
ing constants. Comparison of the Lamarckian-based ge-
netic algorithm with a traditional genetic algorithm and a
Monte Carlo simulated annealing in seven protein–ligand
systems, revealed that both genetic algorithms handled
the ligands with more degrees of freedom than the simu-
lated annealing as used in earlier versions of AutoDock.
However, the Lamarckian genetic algorithm was observed
to be the most efficient and reliable of the three methods.

Lomber and Shoichet116 have used SYBYL (Tripos Asso-
ciates, Inc., St. Louis, MO) to generate a library of drug
conformations. In their method, the conformers were
docked together as an ensemble into a receptor binding
site. The ligand was broken into constituent fragments.
Fragments that are conformationally similar are consid-
ered rigid, and docked only once into the receptor. Docking
of the flexible fragments follow. DOCK was used for this
docking purpose.

Schnecke et al.134,135 have developed Spectitope and
Slide. Their approach is also based on matching frag-
ments, using a fast, multilevel hashing algorithm. Anchor
fragments, derived from ligand conformations in their
dataset, are matched to template points describing the
binding site. The ligand (and receptor) flexibility is intro-
duced following the matching, using mean field theory to
select rotations and resolve collisions.

OVERVIEW OF SEARCH PROCEDURES AND
MATCHING ALGORITHMS

Computational Approaches to the Search Stage

Docking is computationally difficult because there are
many ways of putting two molecules together (three
translational and three rotational degrees of freedom). The
number of possibilities grows exponentially with the size
of the components.136 Combining all patches of the surface
of one protein molecule with all patches of a second
molecule takes on the order of 107 trials.82 The computa-
tional problem is even more profound when considering
protein flexibility and the increasing demand to screen
large databases (of protein structures and of potential
drugs).
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As in protein folding, the binding energy landscape has a
rugged funnel shape.72,137,138 Hence, docking and folding
programs employ similar searching algorithms to locate
the most stable state (global minimum) in the energy
landscape. The search for candidate solutions in a docking
problem is addressed in two essentially different ap-
proaches: (1) a full solution space search in contrast to (2) a
gradual guided progression through solution space. The
first scans the entire solution space in a predefined system-
atic manner. In contrast, the second either scans only part
of the solution space in a partially random and partially
criteria-guided manner, or generates fitting solutions. The
second approach consists mainly of Monte Carlo (MC),
simulated annealing, molecular dynamics (MD), and evolu-
tionary algorithms such as genetic algorithms (GA) and
Tabu search.

The docking program DOT139 provides a complete search
of all orientations between two rigid molecules by system-
atically rotating and translating one molecule about the
other. DOT predicted successfully the electron transfer
complex between bovine cytochrome c oxidase and horse
cytochrome c. Energies for over 36 billion configurations
were calculated, providing a free-energy landscape show-
ing the guidance of the positively charged cytochrome c to
the negative region on the cytochrome c oxidase surface
formed by subunit II.140

Vieth et al.31 have carried out a study addressed at
assessing the search strategies of three methods, molecu-
lar dynamic, Monte Carlo, and genetic algorithms, on five
representative complexes. The three algorithms use a
modified CHARMM-based energy function. In all cases,
the receptors were held rigid, while the ligands were
flexible. Two types of search space were used: an 11-Å
radius sphere and a 2.5-Å, both centered on the active site.
Vieth et al.31 observed MD to be the most efficient with the
larger sphere and the genetic algorithm with the small
sphere. They also found that on average molecular dynam-
ics provided structures lower in energy and closer to the
crystallographic complexes. They further demonstrated
that genetic algorithms require the longest time for a
single energy calculation (the result of the nonbonded
interaction calculations), and hence are the least effi-
cient.31

Unlike the traditional optimization methods, the Geo-
metric Hashing–based matching algorithm is one of the
unique fundamental methods used in docking that can
deal with such a complexity efficiently. The algorithm was
originally suggested for object recognition in computer
vision.141 Combined with an adequate molecular surface
representation, it yields a state-of-the-art tool-kit for dock-
ing.36,37,39–44 Fourier correlation techniques are also widely
used. Usually, three-dimentional grid-based fast-Fourier
transform (FFT) docking correlation methods are slow;
however, more efficient searching may be obtained using
spherical polar Fourier correlations.46 Consider, for ex-
ample, the so-called rigid body docking (which, despite its
name, still allows surface variability). Currently, there is a
vast variability in the search performance of the available
algorithms. Some matching programs, such as those repre-

sented by the FFT,142 take on the order of days of
CPU.78,143–148 This is owing to the exhaustive conforma-
tional space search procedure inherent to the FFT proce-
dure. Others, such as the Geometric Hashing,39–44 focus
only on the relevant conformational space, and reach
similar results in minutes. This is done by considering only
actual reference frames derived from the model (say, the
receptor) protein, and avoiding searching space where in
any case an adequate solution would not be found.

A motion-planning approach to flexible ligand docking
also avoids a full solution space search.149 This method
uses several predicted intermediate configurations of the
ligand. It obtains a distribution of energetically favorable
paths to the binding site. For each path, a “difficulty
weight” represents the energy barriers that the ligand
encounters along the path.

The search stage of molecular docking of ligands to
proteins can be divided into two independent procedures,
depending on whether the binding site is known.150 In
many cases, the binding site can in principle be predefined
using experimental data, e.g., site-directed mutagenesis,
chemical cross-linking, protein family comparisons, or
through computational predictions of the binding
sites.19,121,151–156 Some docking efforts concentrate on
only one of these: In the first, the site is assumed known,
typically in methods allowing flexibility, but in some rigid
body–based methods too.112,115,142 In the second proce-
dure, it is unknown.36,43,44,78,113,142,144–146

In all methods, the search part creates a population of
solutions, each assessed by some energy function, whether
coarse (e.g., as in rigid-body, or hinge-bending algorithms;
Sandak et al.104) or more rigorous (as in MC, MD, simu-
lated annealing, or in steepest descent optimization). The
algorithms differ from each other in the computational
methods used (genetic algorithms, graph theory, molecu-
lar dynamics, Monte Carlo, etc.), as well as in the physico-
chemical criteria composing the scoring function (geomet-
ric complementarity, nonpolar buried surface area,
electrostatic interactions, hydrogen bonds, unsatisfied bur-
ied charges, pairwise amino acid contacts, solvation en-
ergy, similarity to a known ligand, etc.).

We further note that, in principle, any algorithm that is
applicable to structural comparisons, i.e., with the input
being points in space, without a predefined order to these,
can be applied to rigid or hinge-bending domain motion
docking.44,157 The converse also holds: any geometry-
based docking algorithm can, in principle, be applied to
amino acid sequence order-independent structural compari-
son.

Docking is one of the most creative research areas in
computational chemistry/biology. It is hard to enumerate
all the algorithms that have been used. Appart from efforts
to speed up the search stage and include protein flexibility,
one of the trends in the area is to combine the computa-
tional tools or to include experimental (e.g., NMR) informa-
tion in the docking calculation. Combining docking with
NMR benefits both docking and the NMR assignment,
particularly for large protein–protein complexes in the
current structural genomic initiatives.158,159 Instead of a
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simple search and ranking protocol, a two-stage docking
first carries out a rapid search to generate a large number
of plausible candidates. Candidate conformations are next
subjected to an MD simulation/minimization using classi-
cal force field and are ranked also using the classical force
field.160,161 This approach offers a compromise between
search speed and accuracy compared with the more rigor-
ous free energy evaluation.

Docking of Small Molecules

Although the physical principles that govern protein–
protein association are similar to those responsible for
other ligands, docking algorithms designed for protein–
protein association differ somewhat from those for small
ligands used in drug design.82 It has been well documented
that a single conformation drug docking is likely to fail.162

On the other hand, a single conformation protein–protein
docking is widely carried out and has a markedly higher
chance of success.40,41,113 Second, while electrostatics plays
an important role in the energetics of protein–protein
associations, it is nevertheless more important for the
smaller drugs. In protein–small ligand docking, the comple-
mentary contact surfaces between the ligand and the
receptor are substantially smaller and less discriminating
than in the case of protein–protein docking. Small ligands
are often highly flexible, with a broad range of populations,
adapting their surface to optimally complement the recep-
tor pocket. Therefore, one of the main features of drug
docking schemes is enhanced ligand flexibility.163–165 Small
ligand-oriented docking schemes are either semiflex-
ible122,166–169 or flexible.106,170 Single water molecules in
the interface may be particularly important in small
ligand docking, mediating hydrogen bonds.171

The goals of protein–drug (small molecule) docking are
twofold: The most common goal relates to drug design.
However, protein–small molecule docking includes also
cofactors. In such cases, the goal may relate to prediction
of the binding site, or the binding orientation, pointing to
residues crucial in such interactions. Approaches to drug
docking fall into two main categories. Typically, in both,
the binding sites are assumed known. In the first ap-
proach, one starts from a library of fragments, combinato-
rially selecting a fragment at a time. These are docked into
the binding site, growing the molecule while testing all
permissible degrees of freedom, minimizing the energies,
and searching for the most favorable combinations. Such
algorithms are usually breadth-search-first approaches
(reviewed in Bohacek et al.172). In the second type, one
docks entire molecules. Here, rather than step-by-step
ligating groups of atoms, one carries out a (frequently
large-scale) database matching and scoring. To carry out
such a task, a readily available database is employed, such
as ACD (Available Chemical Directory), the NCI database
of drugs, or the Comprehensive Medicinal Chemistry
(CMC) database. One may then either dock these directly,
one by one, or, alternatively, dock compounds containing
given pharmacophores.

Pharmacophore generation and docking

To identify a pharmacophore, the starting point is a
collection of small molecule ligands that were experimen-
tally observed to interact with the given receptor. The
underlying assumption is that such an interaction is
obtained either via a set of geometric features common to
the data set of ligands, or alternatively, they may be
chemical attributes, translated into geometrical features
(e.g., hydrogen bonds, coordinates of hydrophobic atoms,
points representing charged groups, etc.). These features
compose the pharmacophore, which is recognized by the
receptor. Once the pharmacophore is identified, other
ligands with a potential for similar functionality can be
found by screening for molecules containing a similar
constellation. A multiple structural alignment algorithm
is the natural method for identifying pharmacophores.
Additionally, through a multiple structural alignment of
receptor proteins that interact with a given drug molecule
(or any ligand), one can detect the functional site of these
proteins. Figure 2 illustrates one of the algorithms for
multiple structure allignment. Further details are given in
Leibowitz et al.173 Below, we sketch representative algo-
rithms developed for this purpose.

A graph representation of the molecule enables applying
graph theory methods to solve the pair-wise alignment. A
molecule is described as a graph. The nodes and edges
have labels, corresponding to atom types and interatom
distances, respectively. Given the graph representation of
two molecules, an alignment between them corresponds to
a common subgraph, appearing in both graphs. One way to
find common subgraphs is by creating their correspon-
dence graph. In the new graph, a node is formed from each
pair of nodes, each contributed by each of the original two
graphs. An edge is formed between two nodes in the
correspondence graph only if the edges in the original
graphs that correspond to the nodes have similar labels. A
clique in the correspondence graph is equivalent to a
common subgraph of the size of the clique.174,175

The earliest yet most rigorous multiple approaches have
been suggested by Brint and Willet,174 based on an
algorithm by Crandell and Smith.176 The approach is
iterative. At each stage, all common substructures of size i
are found and stored. Next, single atoms from the molecule
are repeatedly added to each of these. If an enlarged
substructure is not found in all the other molecules’ lists, it
is not considered further. Surviving substructures form
the common substructures of size i � 1. To verify that they
are common, an efficient comparison of the substructures
is carried out by generating a canonical name for each
substructure. The name consists of the sorted list of
interdistances of the substructure. The comparison of
substructures is then achieved by simply comparing their
canonical names.

This truly multiple comparison approach guarantees the
optimal solution. At all stages, it retains substructures
that are common to all molecules rather than rely on
common pairwise substructures. Interestingly, this algo-
rithm is only lightly dependent on M, the number of
compared molecules, but is exponentially dependent on
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the size of the largest common substructure. This is a
significant handicap, since it implies a run time of this
order, and worse, a storage space of this order. Indeed,
these results are limited to molecules of size 20, and the
common pharmacophore of up to 9 atoms.

Brint and Willet174 have further suggested an extension
of the clique detection algorithm for finding maximal
common subgraphs. This method is applicable to the
multiple problem, by forming the correspondence graph.
The graph is obtained by taking all M-tuples of nodes, a
node from each molecule. A clique in such a graph corre-
sponds to a substructure common to all the molecules, of
the size of the clique. As in the previous approach, this is a
truly multiple approach, as it both guarantees the optimal
solution, and does not rely on the substructures that are
common only pairwise. However, it is obviously exponen-
tial in M, as the correspondence graph has the complexity
of the number of M-tuples generated by the M molecules.
This is on top of the exponential complexity of clique
detection. The authors propose that the clique algorithm

be applied to find the maximal subgraphs of the pairwise
problems, and the multiple solution is computed by per-
forming all the intersections of these graphs.

Holliday and Willet177 take into account the possibility
that the core does not necessarily appear in all the
molecules. They search for the smallest set of points that
“covers” each of the input molecules by at least P points.
The idea behind their method is to utilize an initial genetic
algorithm stage, which produces a collection of alternative
sets, each consisting of points that are “highly common” in
many of the molecules. The second stage of the algorithm
decides which of these proposed sets is a solution, and
attempts to improve it. It applies a pairwise clique algo-
rithm between each molecule and a proposed set to verify
the solution and to further reduce the size of the set. The
Holliday and Willet’s177 running times are several min-
utes, but all their experiments were carried out on small
molecules of around 10 atoms each.

Finn et al.178 developed an algorithm for pharmacoph-
ore identification, Randomized Pharmacophore Identifica-

Fig. 2. A flowchart of the algorithm for multiple structure allignment (MUSTA).173
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tion for Drug Design (RAPID). The algorithm is designed
to find the structural alignment between a pair of mol-
ecules. A parameter � is defined, which is a fraction of the
smallest molecule, and the goal is to detect a solution of a
size larger than this fraction. The basic operation is to
randomly select a triplet from one molecule and find a
congruent triplet in the other. The transformation Finn et
al.178 induce is computed, and is considered a solution if
the match list it yields is larger than required.

To extend the algorithm to multiple structures, Finn et
al.178 iteratively take all solutions of a certain pairwise
problem. For each of these, they generate a new molecule
composed of the core found by that solution. RAPID
compares the next molecule from the original ensemble,
against each of these new molecules. The authors recog-
nize that the multiple solution is not necessarily composed
from the pairwise solutions. Therefore, at each stage, all
the solutions propagate onwards, and the next molecule
must be compared with each of them. This strategy is
exponential with M. At each iteration, the problem must
be solved again between the current solution and the next
molecule.

However, again, in these approaches, the difficulty
resides in drug flexibility.

Rigoutsos et al.179 have developed an efficient algorithm
for flexible 3-D structure matching against massive data
bases of small molecules. For a given database of three-
dimensional structures and a query molecule as an input,
the method determines those molecules from the data
base, which contain substructures in common with sub-
structures in the query molecule, allowing torsional flexibil-
ity around rotatable bonds. The molecules in the database
are represented as a set of rigid atom groups, with
rotatable bond connectors. For each such molecule, there
might exist a large number of different conformers. Never-
theless, for the method it is enough to store only one
arbitrary conformer. As a result, the algorithm produces a
novel conformer for the query molecule and a three-
dimensional transformation for each rigid part.

The method benefits from the geometric hashing and the
pose clustering techniques. Stockman180 introduced the
pose clustering method, also termed generalized Hough
transform (or transformation clustering). Given two im-
ages, a model and a scene, the method discovers a transfor-
mation between them, which maps sufficient features of
one, onto the other. Rather than begin with transforma-
tions and compute their match lists, this approach works
the other way around: Small pairwise matching fragments
are inspected, collecting evidence of the transformations
that they infer. Each pairwise matching fragment that is
inspected, increments a vote for the transformation that
generates it. Transformations accumulating the largest
number of votes at the end of the process are the transfor-
mations that generate the best alignment. Since in prac-
tice no two fragments are associated by the exact same
transformation, a quantization of the transformation space
is performed. At the first stage of Rigoutsos et al.,179 for
each molecule in the database, every rigid part is repre-
sented in a translation and rotation invariant manner and

stored in the look-up table. This stage is done only once,
off-line. The look-up table is updated when new molecules
become available. The second matching stage identifies
the rigid groups of the query molecule. For every rigid
part, after finding a number of 3-D invariant representa-
tions, the look-up table is accessed and similar molecule
parts are retrieved and stored. Consider some database
molecule that gave a high number of similar substruc-
tures. Not all rigid parts have to be aligned with the rigid
parts of the query molecule. However, some rigid parts
may receive a number of different hypothesized matches.
The flexible alignment could be achieved by selecting one
such hypothesis for every rigid part, but all aligned
subparts should be consistent with the rotatable bonds
between the rigid groups. Since in practice the molecules
are small and the number of rigid parts is also bounded by
a small constant (around 6), it is possible to explore all
relevant combinations of hypothesized matched rigid sub-
structures and to choose the best scoring ones.

Based on similar principles, we have also developed
flexible structural comparisons.181,182

Pharmacophoric-pattern searches of three-dimentional
databases have been routinely used in the search of novel
active compounds for more than a decade.183,184 Miller et
al.185 have recently developed SQ, an atom-based clique-
matching, followed by an alignment scoring function that
recognizes pharmacologically relevant atomic properties.
Pharmacophoric-pattern searches have also been used in
similarity-driven flexible ligand docking,186combined with
DOCK. Carlson et al.187 have developed a dynamic pharma-
cophore construction algorithm, and tested it on HIV-1
integrase. The method accounts for inherent flexibility of
the active site, and attempts to reduce the entropic penalty
that is associated with binding a ligand. Yet, while con-
structing pharmacophores and docking compounds contain-
ing them has obvious advantages, such an approach also
has limitations. The major drawback is that it limits drug
diversity. This is particularly important as it has been
shown that the volume and shape of the binding site can
change, and drugs of different shape/size/composition can
bind at the same site.

Drug diversity in docking

That the volume and shape of the binding site can
change has been very attractively shown in retroviral
proteases, specifically with regard to structural implica-
tions for drug design. Rose et al.188 have found that rigid
body rotation of five domains and movements within their
interfacial joints provide a rational context for understand-
ing why HIV protease mutations that arise in drug-
resistant strains are often spatially removed from the drug
or substrate-binding sites. They have identified and char-
acterized domain motions associated with substrate bind-
ing in the retroviral HIV-1 and SIV proteases. These
motions are in addition to closure of the flaps, and result
from rotations of 6–7° at primarily hydrophobic interfaces.
The crystal structure of the unliganded SIV protease is in
the most “open” conformation of any retroviral protease
determined to date. Comparisons of this structure and of
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unliganded HIV structures with their corresponding ligan-
ded complexes, have illustrated that five domains of the
protease dimer move as rigid bodies with respect to one
another. These five domains include a terminal domain of
the dimer (containing the N and C terminal �-sheet of the
dimer), two core domains, which contain the catalytic
aspartic residues, and two flap domains. Rose et al.188

have shown that the two core domains rotate toward each
other, reshaping the binding pocket. Further, they have
shown that mutations at the interdomain interfaces that
favor the unliganded form increase the off-rate of the
inhibitor, allowing the substrate greater access for cataly-
sis. This indicates a potential mechanism of resistance to
competitive inhibitors, especially when the forward enzy-
matic reaction rate exceeds the rate of substrate dissocia-
tion. It has been noted for many cases, ranging from HIV-1
infection to diseases such as cancer, that often naturally
occurring mutations selected to combat one drug will
confer resistance to some others. Drugs are generally
engineered to have a tightly fitting interface with the
protein active site, with specific favorable interactions.
Hence, this cross-drug resistance may well imply that it is
not necessarily the mutations at the receptor-ligand bind-
ing interface that are solely responsible for the cross
resistance.188 Straightforward reasonable alternatives are
changes in the binding site size, shape, and epitope,
hampering the highly favorable drug-receptor binding.

Further, even presumably specific enzymes or receptors
may bind ligands of different shape, size, and composition,
with (sometimes) higher affinities.67 Currently, synthetic
inhibitors largely mimic natural substrates, and are fre-
quently transition-state analogs. However, if the binding
range is substantially broader, better-fitting inhibitors
with higher affinities can potentially be designed.67 Yet, by
systematically docking databases of drugs, it is difficult to
achieve diversity. Su et al.73 have pointed out that when
one compound fits the binding site well, close analogues
typically do the same. Thus, in ranking docked drugs in
the receptor-binding site, similar drugs are likely to ap-
pear next to each other in the list. Consequently, some-
what less well-fitting drugs might be down the list, and
ignored. In an attempt to increase the diversity, Su et al.73

have grouped the Available Chemical Directory into familes
of related structures. Using DOCK, they docked all mem-
bers of each family, picking only the highest scoring
member of a well-docked family into the list. They have
then compared the obtained list with a molecule-by-
molecule docking for DHFR, thymidylate synthase, and a
T4 mutant of lysozyme. In all cases, the family-based
strategy yielded higher diversity. These were subse-
quently tested experimentally, and found to bind satisfac-
torily.

Nucleic Acid Docking

For DNA, as for proteins, the deterministic structure
can be replaced with the conformation-population concept.
Comparative analysis of DNA–protein complexes with
protein–protein complexes revealed the similar features of
the two, i.e., binding specificity and induced fit upon

binding.189–191 DNA–protein interfaces appear to be more
polar, with many more intermolecular hydrogen bonds and
buried water molecules than protein–protein interfaces.
Binding specificity is dictated by specific DNA-binding
motifs. Although many distinct families of DNA-binding
proteins were defined, no simple “code” describing the
side-chain/base interactions between proteins and DNA
was found.192

Inspection of the literature reveals that very few docking
algorithms have been applied to predict protein–DNA
interactions. There are two main reasons for these rare
applications. First, despite the well-recognized sequence-
dependence of DNA conformation, for the most part the
variability in DNA structure, most of which exists as
variants of the canonical B-DNA, is on a relatively smaller
scale, as compared to proteins or drugs. Hence, from the
purely geometric consideration, the conformers might be
too similar for a standard docking procedure. Second,
while there is a considerable number of protein–DNA
complexes191 in the nucleic acid database (NDB193), no
structure for a Watson-Crick base-paired B-DNA longer
than a dodcamer194 has been reported. Additionally, a
larger fraction of the proteins that bind to DNA are
believed to be natively disordered.60,195 The natively disor-
dered state may be an outcome of a small hydrophobic
core, and uncompensated buried charges, a likely conse-
quence of large binding interfaces and of their binding to a
negatively charged polymer backbone. A larger diversity of
conformations exists for single-stranded RNA. However,
to date, the number of experimentally determined RNA
structures is still relatively small. Additionally, as for
DNA, it appears that an appreciable number of proteins
that bind to RNA are natively disordered.60 Nevertheless,
owing to conformational variability and to its practical
recognition and drug potential, RNA docking may be
expected to grow in magnitude with database growth. One
of the few algorithms dedicated to DNA-protein docking is
MONTY, a Monte Carlo simulation program.196 This
algorithm includes phosphate ethylation interference and
mutagenesis data.

Experimental studies have shown that in solution the
p53 tumor suppresser protein cooperatively binds to the
DNA response elements as a tetramer and results in a
bent conformation of the complex.197 This is in contrast to
the “straight” conformation observed in the crystal com-
plex, where only one p53 DNA binding domain (DBD) is
specifically bound. To investigate the restraints imposed
by the protein tetramer, Durell et al.198 have developed a
systematic procedure to exhaustively search the relative
orientations accessible to the bound p53 DBD subunits.
The model building and energy calculations predicted a
remarkable amount of conformational variability, includ-
ing correlated changes of the bend, twist, and slide degrees
of freedom.

Zacharias and Sklenar199 used harmonic modes to de-
scribe protein flexibility. They have used relaxation of
harmonic modes to improve a steric fit between the ligand
and the minor groove of the DNA. This is an example of
application of large-scale mobility of domains to the dock-
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ing problem. We shall come back to such potential applica-
tions below.

Protein–Protein Docking

Protein–protein docking simulates molecular recogni-
tion. Owing to the sizes of the molecules, this is the most
challenging task. The number of degrees of freedom is
huge, making it impractical to perform entire conforma-
tional search. This is the main reason why protein–protein
docking algorithms handle the molecules as relatively
rigid bodies. Despite the fact that such methods may miss
correct prediction of the native complexes, nevertheless for
a range of complexes such a drastic simplification has
worked reasonably well. The problem is, however, having
a necessarily fast scoring function that would be able to
evaluate a huge number of solutions. Despite the tremen-
dous effort invested in developing such functions (an
outline of which is presented below), this goal has not yet
been achieved satisfactorily.

The problem of protein–protein docking has immense
implications: First, with respect to inhibitor design. How-
ever, second, it is of particular importance with regard to
predicting cellular pathways, macromolecular interactions,
and macromolecular assemblies. Given the difficulties in
experimentally determining the structures of macromolecu-
lar assemblies, being able to computationally predict poten-
tial binding modes is a major aim of protein–protein docking
algorithms. Furthermore, to be truly useful, such algorithms
should be able to model the associations of computationally
modeled protein structures, derived from amino acid
sequences. As in any approach, be it experimental or com-
putational, the first practical step is to demonstrate
that the method works on known cases. Protein–
protein docking algorithms have followed this conven-
tion.15,36,39–44,76,78,101–105,112,113,115,139,142,144,200–211

Within the framework of the rigid body treatment,
flexibility is typically handled by surface variability, with
a soft belt of allowed (though sometimes penalized) inter-
molecular surface atom penetration. Following prediction
of binding associations, some routines carry out optimiza-
tion of the interactions. However, given the difficulty in
the ranking of the unbound solutions, such a procedure is
often impractical. The majority of the rigid-body docking
studies assume knowledge of the binding site. Only a few
are able to handle the entire molecular surfaces (e.g., the
Fast Fourier Transform-based matching, FFT142; the Geo-
metric Hashing39–44,204 and BiGGER.113 And even among
these, while sometimes they initially search the full confor-
mational space (FTDOCK), subsequently the solutions are
pruned by a binding site filter (see references112,115,143,208

and to a lesser extent reference148). The CPU times
required for the matching part of the docking vary widely:
in the minutes range for the Geometric Hashing (Table I),
in hours for BiGGER, and in days for the FFT.78,143,148

BiGGER113 is faster than the FFT (or FTDOCK) Fast
Fourier Transform based-algorithm. While executing a
real space search, BiGGER is guided by effective heuristic
rules, which reduce the search space and the computa-
tional times.

The results obtained from protein–protein docking algo-
rithms are in general satisfactory when reconstructing
known complexes. However, when applying these to the
so-called unbound docking problem, the results typically
depend on the extent of the rearrangement that has taken
place between the input data coordinates and the native
complexed structures. In some examples, docking algo-
rithms do very well in unbound cases (Table Ib, see also
Tables II and III, obtaining relatively low rmsd between
the predicted and the actual crystal-complexed structure.
However, the quality of the predictions deteriorates with
the extent of the rearrangement that has taken place. This
is expected. The surfaces of the molecules are in constant
motion. Movements of side-chains and surface atoms
implicitly force docking programs to take account of inter-
molecular penetrations of the docked molecule-pair. Yet,
in solution, such surface penetrations are alleviated by the
movements of the groups of atoms on the molecular
surface.

Several schemes have been adopted beyond soft-layer
scoring. If the binding site is assumed to be unknown, two
major approaches have been undertaken. In the first,
“rough”78,138,145 (or, low resolution) docking is carried out.
Here, only the C� backbone atoms are used rather than the
full side-chain atom description. In this implementation,
such a low-resolution docking implicitly takes into account
surface atom movements. While the idea is attractive, and
yields enhanced performance (in minutes, like the Geomet-
ric Hashing full atom runs40), on the down side the quality
of the solutions deteriorates, although this can change
with improved scoring schemes. The second drawback of
this approach is that it handles only side-chain motions,
disregarding backbone movements. The second approach
is application of a method such as that devised by Abagyan
and his colleagues,212–214 which is based on the method of
Li and Scheraga.215 This Internal Coordinate Mechanics
(ICM) strategy and the ICM psedo-Brownian algorithm
followed by optimization216 have proven quite successful.
Such an approach can in principle be applied following
rigid docking by other algorithms. However, the drawback
of this approach is that it too largely handles side-chains,
rather than large backbone movements.

The third approach is docking allowing hinge-bending
motions.101–105 The ligands are allowed to undergo trans-
lations and rotations of their parts in order to optimally
dock to the surface of the receptor. The ligand information
is stored in a look-up table, generated in the preprocessing
phase, which is invariant to this type of transformation.
The location of the hinge is predetermined. Since this
robotics-based algorithm is fast, many other hinge posi-
tions may be tried. The structure of the receptor is
presented to the system in the next, recognition phase of
the algorithm. If a ligand has an “interest point” (surface
descriptor point) configuration similar to the receptor
“interest point” configuration, the algorithm casts a vote
for the computed location of the hinge. This hinge location
is computed from the transformation between the corre-
sponding receptor and ligand interest point surface configu-
rations. Highest scoring (voted for) hinge locations are
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sought. No knowledge of the binding site, or of the hinge
locations relative to the receptor is assumed.

In the preprocessing step, the ligand molecule (model) is
described as a set of interest points. The (predetermined)
hinge location is positioned at the origin of a 3-D Cartesian
coordinate frame. This frame is the ligand frame. The
orientation of this frame is set arbitrarily. For each
noncollinear triplet of interest points, in each of the ligand
parts, a unique triplet-based Cartesian frame is defined
(the triplet frame). The shape signature of each triplet of
points is the ordered triangle side lengths. This geometric
shape signature of the triplet constitutes an address to a
look-up hash table. The information that is stored in this
entry at this address is the ligand identification, the part
number, and the transformations between the triplet
frame and the ligand frame.

In the recognition step, the molecular surface of the
receptor is similarly described by its set of interest points.

All noncollinear triplets of the interest points of the
receptor are considered in the docking stage. For each of
these triplets, the triplet-based Cartesian frames are
computed. Each is the receptor triplet frame, calculated as
above. This calculation is invariant under rotation and
translation, with congruent ligand triangles having simi-
lar values. The look-up table calculated in the preprocess-
ing phase is entered using as an address the currently
computed ordered triplet of triangle side lengths of the
receptor. For each ligand-record present at that entry in
the table, a candidate ligand frame is computed by apply-
ing the pre-recorded ligand transformation at that (hash
table) entry,141,217 to the current receptor triplet frame.
The origin of the candidate ligand frame is the candidate
hinge location. We vote for the location and orientation of
the candidate, hinge-centered, ligand frame. Finally, we
seek hinge locations with high scores. A high-scoring hinge
location defines the 3-D translation that the ligand would

TABLE IIIa. Comparison of Some Rigid-Body Algorithms for Bound Cases†

Complex PDB
Res
(Å)

Norel et al.a FTDOCKb BiGGERc

Rank
solutions RMSD Rank solutions RMSD Rank solutions RMSD

Protease-inhibitor
1acb 2.00 1 out of 1121 0.9 — — 18 out of 1,000 0.6
1cho 1.80 1 out of 471 0.5 40 out of 218 0.8 — —
1cgi 2.30 — — 3 out of 161 1.0 — —
2kai 2.50 11 out of 1,227 1.2 38 out of 502 0.4 — —
2sni 2.10 1 out of 1,367 1.1 8 out of 54 0.6 — —
2sic 1.80 1 out of 1,229 1.1 22 out of 30 0.8 2 out of 1,000 3.8
1cse 1.20 2 out of 1,024 1.3 — — — —
2tec 1.98 1 out of 1,042 1.2 — — 77 out of 1,000 3.6
2ptc 1.90 1 out of 1,027 0.06 91 out of 513 0.7 — —

Antibody-antigen
1mlc 2.10 — — 2 out of 507 0.8 — —
1vfb 1.80 20/2181 (1.5) 1.5 240 out of 631 0.7 — —

TABLE IIIb. Comparison of Some Rigid-Body Algorithms for Some Inbound Cases†

Complex
PDB

Receptor Ligand Norel et al.a FTDOCKb FTDOCKc BiGGERd

PDB
Res
(Å) PDB

Res
(Å) Rank solutions RMSD

Rank
solutions RMSD

Rank
solutions RMSD

Rank
solutions RMSD

Protease-inhibitor
1cho 5cha 1.67 2ovo 1.50 2 out of 2,289 1.60 11 out of 86 1.20 1 out of 86 1.30 6 out of 1,000 2.90
1cgi 1chg 2.50 1hpt 2.30 — — 3 out of 94 1.80 3 out of 94 2.20 9 out of 1,000 3.70
2kai 2pka 2.05 6pti 1.70 9 out of 4,222 1.20 130 out of 364 1.50 2 out of 364 1.30 Not found
2sni 2sbt 2.80 2ci2 2.00 92 out of 3,582 2.60 8 out of 26 1.80 4 out of 26 2.60 16 out of 1,000 1.30
2sic 2stl 1.80 3ssi 2.30 — — Not found — — 15 out of 1,000 3.30
2ptc 1tgn 1.60 5pti 1.50 1 out of 3,453 1.20 16 out of 229 1.50 11 out of 229 1.60 52 out of 1,000 2.70

Antibody-antigen
1mlc 1mlb 2.10 1lza 1.60 — — 41 out of 590 1.20 — — Not found
1vfb 1vfa 1.80 1lza 1.60 — — 176 out of 707 2.10 — — Not found
1hfl 3hfl 2.50 1lza 1.60 65 out of 10,733 1.08 228 out of 519 1.80 — — Not found
3hfm 3fhm 1lza 1.60 281 out of 10,685 2.80 65 out of 762 1.10 — — Not found

†Ranking, number of solutions and the RMSD for the highest ranking docked prediction, for several rigid-body docking algorithms. a: Complexed,
bound cases; b: unbound cases. Table IIIa: aThe Norel et al. cases are taken from Norel et al., 199940; bThe FTDOCK cases are taken from Gabb et
al., 1997112; cThe BiGGER results are taken from Palma et al., 2000113. In all cases, rigid-body docking is performed. In all cases, initially the
entire surfaces of the two molecules are used. However, at the second stage, Gabb et al.112 use active site residues to prune the solutions. Table
IIIb: The aNorel et al.40 and the bFTDOCK and dBiGGER results are from Gabb et al.112 and Palma et al.113 The FTDOCK are taken from Jackson
et al.115 As described in the text, the scoring is somewhat different. However, the basic docking procedures are the same (entire molecular surfaces
and rigid docking in the first stage, followed by active site pruning). The major difference in scoring between Gabb et al. and Jackson et al. is in the
solavation treatment.
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need to undergo in this candidate docking. The appropri-
ate rotations are calculated separately for each part only
at a later scoring and filtering stage. In the current step,
hinges that have received a large number of votes are
selected. Further details are given in Sandak et al.101–105

This hinge-bending algorithm exploits the fact that both
parts of the molecule share the same hinge. The essential
point here is the way it is taken into account by locating
the origin of the reference frame of the ligand at the hinge.
In this way, both parts contribute votes to a reference
frame at the same location, although the orientations of
both parts with respect to each other may differ. Most
importantly, by picking up votes from both molecular
parts, a ligand, which might otherwise have only a small
portion of surface complementary to the receptor surface
in each of the parts, may still score high. Thus, while each
of the individual parts of the ligand can obtain an insignifi-
cant score, the sum of the votes obtained from both of the
ligand’s parts, may yield an overall acceptable match,
which can be automatically detected. This algorithm can
be applied to multiple hinges and a database search.

This approach is fast, also on the order of minutes of
CPU. It allows backbone movements. However, it has two
major drawbacks: the first is the necessity to prepick likely
hinges; and the second is that each part is handled as a
rigid body. However, combined with an algorithm that
predicts the location of the hinges and the motions218,219 or
through structural comparisons of the protein family
allowing hinge-bending movements,181–182 the likely loca-
tions of the hinges can be predicted. To address the rigid
parts, a similar approach as, for example, taken by Aba-
gyan and his colleagues, can be applied. Alternatively, the
surface flexibility may be derived from ensembles. How-
ever, it remains to be seen how well such a combined
method would actually work.

Docking in Protein Folding

Docking and protein folding are all too often considered
to be distinct fields. One resorts to using docking algo-
rithms either in efforts for drug design or in protein–
protein docking when considering enzyme–inhibitor, anti-
body-antigen associations or receptor–ligand. Yet, today it
is increasingly realized that protein folding is a hierarchi-
cal process.210–220 Hierarchy implies a process of assembly
of smaller folding entities, be it conformationally fluctuat-
ing building blocks, or the more stable hydrophobic folding
units or domains. Currently, predictive protein folding
schemes focus on single domain proteins, as these consti-
tute simpler systems. However, the next stage would
involve putting the domains together. Multidomain asso-
ciation resembles the formation of multimolecular cellular
assembly. To carry out such a task, docking is likely to be a
tool of choice.

Current docking schemes do not attempt to recreate
multimolecular assemblies, unless they possess restrictive
symmetries, such as in viral coat proteins. The reason is
the huge computational complexity in the number of ways
several molecules can recombine. This problem is aggra-
vated by the size of each of the molecules. Nevertheless, in

applying docking tools to folding, there are a number of
considerations that, at least in principle, may reduce the
heavy computational load. These include the size and the
backbone connectivity.

On the practical side, cutting crystal structures of
monomers to their domains and redocking these may not
address the real problem. Reconstructing a protein from
its dismembered domains would present the combinatorial
assembly nature of the multiple domains. However, as the
domains would be cut from the three-dimensional struc-
ture, this problem resembles the “bound” docking, rather
than mimics the real-life “unbound” domains. One way to
overcome this difficulty is again by generating ensembles
of conformations of the separate domains through multiple
trajectory runs.

Figure 3 illustrates the concept of docking of domains of
a large, multidomain protein, within the folding scheme.
This kind of relationship between docking and folding is
best illustrated by the domain-directed reassembly of
active dihydrofolate reductase from rationally designed
fragments.220,221 Dihydrofolate reductase may be divided
into three fragments223–225 (Fig. 3). Neither of the frag-
ments is stable by itself in solution,225 even though some
population of the near native conformation for the indi-
vidual fragments may exist226 (Fig. 3). Fragment 37–159
has been observed to be stable in nonnative conformation.
However, when fragments are linked with GCN4 leucine
zipper domain (fragment 1 and 2 in one part and fragment
3 in another), the dimerization of the leucine zipper
domains assembles all fragments, and the dihydrofolate
reductase is active.223,224 Here, the folding of dihydrofo-
late reductase may be viewed as a step-wise docking of
near native conformations from the fragments, as illus-
trated in Figure 3.

APPROACHES TO SCORING SCHEMES

A search algorithm may produce an immense number of
solutions,113 unmanageable for any practical need: 109.
Theoretically, free-energy simulation can be a reliable
discrimination to check the solutions.227 However, it is not
practical to use such an approach in docking searches. The
purpose of the scoring function is to discriminate between
“correct” native solutions with low rmsd from the crystal
complex and others within a reasonable computation time.
Vieth et al.32 have assessed the energy functions for
flexible docking in term of efficiency and selectivity. They
assess these two components in a broad range of energy
functions, derived from systematic modification of the
CHARMM param19/toph19 energy function. In particular,
they examine the effects of the dielectric constant, the
solvation model, the scaling of surface charges, reduction
of van der Waals repulsion and nonbonded cutoffs. Over-
all, Brooks and colleagues32 favor an efficient function for
docking, since only an efficient function can dock the
ligand in the active site. In the early docking stages, the
soft core vdW is critical. Once docked, a hard-core potential
can take over to optimize it.

Although some algorithms are able to rank correct
solutions within the top hundred or even within the top ten
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places for some predictive docking cases,40,113,225,115,208,228

for most complexes the highest ranked structures are still
false positives, i.e., solutions with a high rmsd from the
complex, a high score, and a low rank148 (Tables I–III).
Thus, in spite of the advanced sophisticated schemes
applied in some scoring functions, no efficient method for
reliable discrimination between correct solutions and false
positives generated by predictive docking algorithms is
currently available.40 A lack of a reliable method for
quickly locating correct solutions, in particular if the

binding site is unknown, is the major obstacle in using
predictive docking for practical applications.

Analyses of protein–protein interfaces40 have illus-
trated that the binding interfaces do not necessarily have
the largest extent of buried surface areas. Furthermore,
native-like bound conformations do not manifest the larg-
est nonpolar buried surface areas as compared to other
potentially feasible docked solutions. They do not contain
the largest number of hydrogen bonds, or the smallest
number of unsatisfied buried polar groups. In solution,

Fig. 3. The concept of docking of domains of multidomain proteins within the folding scheme. Dihydrofolate
reductase may be divided into three fragments: F1 (1–36) red; F2(37–88) green; and F3(89–159) yellow.
Some population of near native conformations for the individual fragments may exist (top box).226 The collision
complexes from these transient fragments is a docking–folding problem. There are many collision complexes
(small boxes in the large box) and the native-like folded conformation (central one) is one of them. When the
fragments are linked via dimerization domains, the native conformation is stabilized and shifts to a folded active
dihydrofolate reductase.
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these are likely to be handled by surface motions, eliminat-
ing such unfavorable energy contributions. Hence, the
problem is how, despite these hurdles, to still conceivably
be able to detect candidate lead compounds/protein inhibi-
tors or native protein–protein interactions.

Currently, the solution appears to be a two-stage rank-
ing, i.e., using traditional scoring to rapidly scan possible
solutions and obtain initial “good” candidates, followed by
more advanced methods to further discriminate the lim-
ited conformations.160 Below, we first describe scoring
functions (for fast scanning) and briefly mention recent
progress in electrostatic solvation and free-energy calcula-
tions.140,148,161,227,229,230

Additionally, we outline a potentially complementary
way of handling this problem, through utilization of a
library of functional epitopes. Such a library can be gener-
ated using efficient computational techniques.173,181,182,231

In deriving these, we should bear in mind the recently
observed determinants of binding sites: flexibil-
ity50–52,54,64,69,70 and energy hot spots.232–238

Stage of Scoring in the Algorithm Flow and
Reference for the Solution

Docking algorithms can be classified by the stage of
scoring in the algorithm flow into two groups: integrated
and edge functions. In integrated algorithms, scoring is
integrated into the search stage and filter emerging solu-
tions. In edge algorithms, scoring is applied at the end of
the search stage. The major difference, therefore, is that
the scoring function forms part of the design of the
solutions in integrated algorithms but not in edge algo-
rithms. Integrated algorithms are required in some of the
computational schemes used in docking, for example, in
genetic algorithms and in anchoring algorithms. Genetic
algorithms require a fitness score that is applied after each
generation and used for the selection pressure opera-
tion.77,133,227 An anchoring algorithm divides the docked
protein into segments. The segments are docked to the
target protein layer by layer. Since the solution number
grows exponentially with the addition of layers, a scoring
function is needed to limit the number of growing seeds
that are kept for further calculations. It is a matter of
course that the scoring function will include intramolecu-
lar scores.

The score can be determined with regard to (1) other
solutions, (2) a known structure, or (3) the solution itself.
The parameters that can be used for self-reference are
listed below. If a correct solution (a solution with a low
rmsd from the complex) is found, one can expect to find
other solutions that differ only slightly from it. Therefore,
a comparison of each solution with other solutions, by a
direct comparison or by clustering, is generally beneficial.
In principle, the cluster size may also be used as a
parameter in a scoring function. However, it may also
depend on the shape of the binding site. A larger number of
similar solutions is expected when the binding site is flat,
as compared to, say, deep holes.

An example for a scoring function that refers to a known
structure is the similarity driven algorithm by Fradera et

al.186 This is an anchoring algorithm to assess the improve-
ment of the scoring function by a similarity parameter
used at different stages of the algorithm flow. SPDOCK,
similarity-penalized docking, and SGDOCK, similarity-
guided docking, differ from each other only by the stage in
which the similarity to a reference ligand is used to correct
the score of the solutions. In SPDOCK, the docking scores
are corrected according to the similarity to a reference
structure only at the end of the docking procedure, whereas
in SGDOCK, the docking scores are corrected according to
the similarity to a reference structure every time a DOCK
energy calculation is performed. The similarity in perfor-
mance between SPDOCK and DOCK appears greater than
between SGDOCK and DOCK. Consistent with this find-
ing, integrated algorithms are expected to have more
impact on the docking results than edge algorithms.

Modes of parameter consideration: positive
contribution vs. penalty and exclusion vs. relative
contribution

The parameters of a scoring function can either contrib-
ute to or subtract from the score of a given solution or be
used as an exclusion filter. Most of the current scoring
functions combine a few parameters. The mode of parame-
ter consideration is semantic, since it might have an
impact on the stringency of other scoring criteria as well as
on the algorithm flow and complexity. The addition of
exclusion filters might enable the use of less stringent
criteria for other scoring parameters. Therefore, an exclu-
sion filter might contribute to dealing with flexibility by
“softening” the scoring function. An exclusion parameter
also enables a module flow. In ESCHER38 for example,
there are three modules: SHAPES, which creates rough
solutions based on geometric complementarity; BUMPS,
which identifies molecular collisions; and CHARGES, which
evaluates the electrostatic complementarity. Since the
SHAPES module excludes solutions, the other two mod-
ules are operated only on the remaining solutions, reduc-
ing the complexity of these stages. This principle of
applying a rapid calculated parameter for reducing the
solution population before using a high-cost calculated
parameter, is widely used. In most cases, geometric crite-
ria are used as the primary exclusion parameter owing to
their speed, and energy criteria are applied on the signifi-
cantly reduced solution population.

Tables II classifies the docking algorithms according to
their function parameters. Appendix A suggests a unified
format for presentation of the results by the different
algorithms, so they can be straightforwardly assessed.
Appendix B lists some available structures for docking
trials.

Parameters Used for Scoring

The parameters’ choice depends on the breadth of sam-
pling: entire surface vs. binding sites. Scoring parameters
can be roughly divided into two groups: collective parame-
ters and individual parameters. A collective parameter
refers to a property, which characterizes the entire mole-
cule, whereas an individual parameter refers to a specific
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atom or residue. An example of a collective parameter is
the diameter parameter used in the graph theoretic tech-
nique for macromolecular docking.239 The algorithm finds
the maximal complementary sets of donor/acceptor H-
bond pairs between two proteins. Many sets of hydrogen
bonds are sparsely distributed over the surface of the
proteins, whereas the area of interaction between two
proteins is usually reasonably compact. A diameter param-
eter is used to constrain the distance between any two
members of a set of hydrogen bond donors/acceptors. An
example for an individual parameter is the pairwise
amino acid contacts parameter (PAB, the probability of
amino acid A being in contact with amino acid B) used in
the BiGGER algorithm.113

Docking programs use essentially similar computational
elements. These include energy minimization of rigid-body
docking, conformational minimization including side-
chains, solvation, electrostatics, a van der Waals term in
the free-energy expression, or a quasi-global Monte Carlo
minimization.214 These are computationally demanding.
On the other hand, simpler and much faster scoring
schemes include elements such as geometric complementa-
rity, contact and overlap checks; counts of hydrogen bonds;
counts of unsatisfied buried charges; extent of buried
nonpolar surface area, or total buried surface area. How-
ever, the programs differ in the implementation of these,
and in the way they are put together. Below, we outline the
major computational parameters. It is, however, impor-
tant to distinguish between those that are effective only for
discrimination between near-native conformations, all in
the relative vicinity of binding sites112,115,148 and those
applied to globally different conformations.40,78,113 These
latter need faster scoring schemes. Hence, in particular,
which element a user should employ depends on the
situation at hand. Further, the shape of the binding site,
concave (as in enzymes) vs. flat (as in subunit–subunit),
charged vs. hydrophobic, large vs. small, may also dictate
some parameter preference.

The following parameters have been used in scoring
functions.

Geometric complementarity. From the early days of
docking, it has been postulated and repeatedly reaffirmed
that geometric matching plays an important role in deter-
mining the structure of a complex.15–17,39,240 The three-
dimensional (3D) structures of most protein complexes
reveal a close geometric match between interfaces of a
receptor and a ligand.29–44,142 The scoring functions of
early docking algorithms used practically exclusively geo-
metric complementarity criteria.17,39–44,136,142,154,211 These
functions are understandably more successful in “bound”
docking as compared to “unbound” docking. As a result,
the consideration of conservation of geometric similarity
between the unbound and bound, and consequently using
the bound structure in rigid docking of unbound structures
were supplemented by efforts to characterize protein flex-
ibility and its effect on geometric complementarity.49,62,114

Although usually bound complex complementarity is bet-
ter than in computationally proposed solutions,241 there
are cases where false-positive solutions display a better

shape complementarity than correct solutions.40 Conse-
quently, current scoring functions frequently use addi-
tional criteria in combination with geometric complemen-
tarity.40,77,113,228,242 Since geometric complementarity
calculations are highly efficient, they usually serve as a
primary filter before costly evaluation criteria, reducing
the number of solutions at the end of the search stage.

Geometric complementarity has been assessed by a
number of methods. Gardiner et al.239 sought a similar
shape. The maximal area of complementarity between two
proteins is detected using a clique of a graph. A clique of a
graph G, is a subgraph of G in which every vertex is
connected to every other vertex and that is not contained
in any larger subgraph with this property. In a later work,
Gardiner et al.77 replaced this definition of geometric
complementarity by the relative directions of the surface
normals and additionally the type of surface. Geometric
complementarity was redefined as nearly opposite surface
normals (the angle between the normals is close to 180°)
and the Connolly shape is different, unless it is type 2 (i.e.,
sadddle). This definition of geometric complementarity
has been suggested earlier as part of the search
stage.36,37,39–43,157 The implementation of this definition
in the scoring stage was performed not only by Gardiner et
al.77 but also previously by others.36,37,39–44,206,242 Al-
though the definition of geometric complementarity ap-
pears to be similar, in the score based on this definition it is
calculated differently. Lin et al.36 and Hou et al.242 use the
area shared between two matching (i.e., complementary)
dots, whereas Norel et al.40 and Gardiner et al.77 use the
number of matching dots. Therefore, there will be a
variance in the contributions of some matching point pairs
sharing different areas to these scoring funtions.

How to score geometric complemenarity is strongly
coupled with how the surface is represented. Palma et
al.113 used a simplified approach. The surface of a protein
is represented by a collection of a 1 Å grid cubes. Geometric
complementarity is defined as an overlap between surface
cells from different proteins. In ESCHER,38 the complemen-
tarity score is defined as the number of corresponding
consecutive polygon vertices whose distance is under
1.6 Å. Hidden in the ESCHER algorithm is the assumption
that a geometric complementarity between the top of the
ligand and the bottom of the receptor is indicative of areas
showing the best geometric fit. No validation of this
assumption was presented, although a verification that
the results of the algorithm are independent of the orienta-
tion of the target receptor in the reference system has been
done. The optimization of solutions with highest comple-
mentarity using a fine step of translation and rotation is a
common method of geometric complementarity optimiza-
tion.241

Intermolecular overlap. The quest for geometric
complementarity is often balanced by consideration of
intermolecular overlap. The general approach to intermo-
lecular overlaps is tolerance to slight interface clashes and
penalty for protein interior clashes. The tolerance is
usually implemented by a surface belt of nonpenalized
penetration area.38,77,112,113 Gardiner et al.77 defined inter-
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molecular overlap as a clash between the ligand surface
dots and the interior dots of the receptor. Interior points
were defined as grid points that were near a receptor atom
and were further than 2 Å from any surface dot. This is not
an even-handed approach. A penetration of a ligand side-
chain into the receptor is penalized, whereas a receptor
side-chain penetration into the ligand is not. On the other
hand, Palma et al.113 use an even-handed approach. The
core of a protein is defined as a 1 Å grid cube, the center of
which, and all of its neighbors1 centers, lies within 1 Å of a
van der Waals sphere of any protein atom. An overlap
between cores of the two proteins is used to exclude
solutions, with the exception of five amino acids: Arg, Lys,
Asp, Glu, Met. These amino acids possess the highest
frequencies and amplitudes of movements between the
structures of free and cocrystallized proteins. Norel et
al.40–43 compute a scoring function, also based on geomet-
ric features. They award surface contact, penalize over-
laps, and reject serious overlaps. Allowing some intermo-
lecular penetrations implicitly takes into account a certain
extent of conformational flexibility. The only solutions that
are discarded are those in which ligand atoms fall into the
“core” of the receptor protein. Ligand atom centers that
invade the outer shell of the molecular representation are
retained.

For the protein–protein docking, in the scoring and
overlap test Norel et al.43 map the receptor onto a 3D grid,
with a 1 Å resolution. Interior and exterior atoms are
mapped as balls with radii equal to their van der Waals
radii plus the radius of the probe size, and their voxels are
marked i and e, respectively. MS dots (generated using the
Connolly surface description, at a density of 5 dots/1Å2 are
also mapped onto the grid as balls of 1Å radii. These are s
voxels. With such mapping, the receptor is represented as
a “core” of interior voxels i, a wide layer of intermediate
voxels e, and a thin layer of surface s voxels. After the
receptor is mapped, the ligand atoms are transformed
using the best rigid transformation matrix obtained in the
matching step. If any of the ligand atoms fall into a voxel
designated i or e, the solution is discarded. If the solution
passes the overlap test, the MS dots of the ligand are also
transformed and used to compute a scoring function. Three
counters are kept: one for ligand dots that fall in i voxels
(I), one for MS dots that fall into e voxels (E), and one for
MS ligand dots that fall into s voxels (S). For the protein–
protein and protein–DNA cases, the score is computed as:
S � 4E-10I. For the protein–drugs and DNA–drugs, the
score is 5S � E � I. Surface contact score increases the
score, and overlap of the ligand surface dots into the
receptor’s interior reduces the score. This scoring scheme
is used for ranking the solutions.

ESCHER38 takes into consideration the collisions sum,
rather than each surface dot separately. In Sandak et
al.101–105 in the verification stage, the respective transfor-
mations of each of the parts are applied to the atoms in
each of the parts of the ligand (or the receptor, depending
on the location of the hinge). Transformations that result
in the penetration of a ligand part into the receptor
(collision check) or yield collisions between the parts of the

ligand (self-collision check, see below), are discarded. The
receptor and the ligand molecules are assumed to collide, if
the distance between a ligand atom and a receptor atom is
smaller than the sum of their respective van der Waals
radii minus a proximity threshold.

An original approach to intermolecular overlaps is in the
scoring function of the least-squares algorithm.243 Instead
of using the widespread belt tolerance, the B factor was
taken into account. The advantage of this method is the
uneven weight coupled with penetration of different at-
oms. High B factor atoms indicate uncertainty in an atoms’
position. A high mobility atom is more likely to be associ-
ated with a false penetration than a low mobility atom.
Therefore, the weight of the collision has been taken to be
inversely proportional to the B factor. The B factor can be
used not only in the scoring stage but also in the search
stage. Docking using a stable subset of atoms, such as
backbone atoms, has proven to be a feasible approach.63,96

The B factor can be used to define an even more robust
subset to be used for docking.

Intra-molecular overlap. The geometric complemen-
tarity and the inter-molecular overlap criteria are used to
evaluate shape complementarity with respect to entire
receptor/ligand molecules. When ligand101,121,186 or recep-
tor backbone flexibility104,105 are taken into account, an
additional criterion of shape complementarity is used. One
of the possibilities enabling domain flexibility is division of
the ligand to sets of rigid fragments that are docked
separately. An anchor rigid fragment is selected, and
docked into the receptor. Other fragments are docked layer
by layer. The flexibility is implemented in a range of
positions at the joints of the rigid fragments. This method
bears some resemblance to protein folding algorithms that
identify building blocks on the primary sequence, which
are then docked with respect to each other to reconstruct
the folded protein structure. However, there a combinato-
rial assembly of the domains is considered.244 In order to
limit the number of seeds (i.e., the number of different
trees of fragment orientations) and to allow a reasonable
calculation time, intramolecular overlap is used to score
the growing solutions. In both algorithms,121,186 a thresh-
old was used to eliminate solutions. Kuntz et al. discarded
any orientation in which a fragment atom is within 2.5 Å of
a receptor atom.15

Sandak et al.101–105 first check for intermolecular pen-
etration, and calculate the “contact percentage” between
the receptor and the ligand. Only binding modes receiving
a contact percentage that is higher than the contact
threshold are considered for the self-penetration check.
Depending on the location of the hinge (in the ligand or in
the receptor), the self-collision would be carried out. The
self-collision check employs the same criterion for rejecting
self-penetration causing transformations, as being done by
the intermolecular collision check, described above. Devel-
opment of additional intramolecular collision (penetra-
tion) checks is expected, given that docking of domains is
likely to be increasingly applied to the folding of large
proteins.
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Hydrogen bonds. One of the most widely used criteria
minor only to shape complementarity is hydrogen bonding.
There are 1.13 � 0.47 hydrogen bonds per 1002 buried
surface area.49 Information on hydrogen atom positions is
missing for the majority of X-ray structures of proteins.
Several methods exist for constructing these hydrogen
atom positions. Methods such as Barlow and Thornton’s245

or WHAT IF, place hydrogen atoms according to standard
geometries for every amino acid type. More sophisticated
methods, such as the standard coordinate method in
Insight 97, take the local environment into account and
optionally perform an energy minimization.246 There is a
diverse classification of atoms with respect to hydrogen
bond formation potential.77,239 For example, four types of
classes: H donor, H acceptor, H donors/acceptors, and
non-H bonding may be defined.77 Satisfying the hydrogen
bonding potential is defined as formation of the following
matches: H donor matches H acceptor or H donor/acceptor,
H acceptor, or matches H donor or H donor/acceptor, H
donor/acceptor matches H donor, H acceptor, or H donor/
acceptor, and non-H bonding matches non-H bonding. The
same group classification was already suggested previ-
ously.38,76 The division of the atoms into these groups is
practically identical (except N of His, which is classified as
a hydrogen bond donor by Gardiner et al.77 and by Jiang
and Kim76 but as a hydrogen non-bonding by Avsiello et
al.38). The major difference between these scoring func-
tions regarding the hydrogen bond parameter, is that
Gardiner et al.77 and Jiang and kim76 do not discriminate
between the bond types, whereas Avsiello et al.38 attach
different weights to different bond types. For example, a
donor-donor interaction is weighted as �3 and a donor-
acceptor interaction is weighted as �3. A low sum value
implies multiplicity of hydrogen bonds. Another difference
is the distance between the atoms forming the hydrogen
bond. According to Gardiner et al.77 the hydrogen satisfac-
tion potential is considered only if atoms have the same
grid value (i.e., the distance between the atoms is not
larger than 2 Å), while Ausiello et al.38 consider atoms up
to 3.4 Å apart. On the other hand, Jiang and Kim76 adopt a
different approach. One predefined distance is replaced by
a series of cube sizes (1 to 6 Å with a 1 Å step). These are
used to represent the receptor and the ligand surfaces. A
solution is selected only if it consistently has positive total
interactions. A different classification of atoms with re-
spect to hydrogen bonds generated 4 types. These replace
the H donors/acceptors and non-H bonding with concepts
of Neutral donor and Neutral acceptor.241

Contact area. Consideration of contact area is fre-
quently employed by a variety of schemes, in particular in
algorithms that are rigid-body, geometry-based.

Janin and Chothia79 determined the interface area of a
number of protein–protein complexes to be in the range
1,200–1,600 Å2. These data were implemented into the
Gardiner et al.239 docking algorithm. Assuming an approxi-
mately circular interface, an interface area of 1,200–1,600
Å2 is equal to 20–30 Å diameter in each protein. Gardiner
et al.239 used this diameter parameter to restrict the area
of hydrogen bonds as was detailed previously. Shoichet et

al.136 proposed the parameter of volume inside a receptor
pocket as an alternative to the contact surface area
parameter.

Kuntz et al.247 found that binding energies initially
increase with contact area. However, they quickly reach
maxima and do not correlate with the contact area beyond
this point. This is understandable since binding energy
cannot increase indefinitly. In practice, contact area largely
translates to taking account of hydrophobicity at the
intermolecular interfaces. Hydrophobicity has been well
known to play important, albeit variable, role at the
interfaces. Hydrophobic patches are present, although it is
not the largest hydrophobic patches that determine the
interaction sites.40,41,248,249

For the protein–protein cases, Norel et al.40,41 have
further utilized a very simple “hydrophobicity filter.” The
receptor and ligand atoms are divided into polar and
hydrophobic. Each MS dot (Connolly’s Molecular Surface
dots) is labeled, depending on its closest atom. When
mapping the receptor molecule onto the 3D grid to com-
pute the score, at each surface voxel two counters are kept,
for polar MS dots and for hydrophobic dots that fall into
that voxel. The ligand molecule is transformed and mapped
onto the same grid. Three counters are then updated for
each MS dot, one for polar-polar interactions (pp), one for
hydrophobic-hydrophobic interactions (hh), and one for
hydrophobic-polar interactions (hp). The total number of
interactions is computed as

totalinteractions � hh � pp � hp.

The hydrophobicity factor is

hf �
hh

totalinteractions
.

A Connectivity Filter for solutions that pass the overlap
test is also computed.43 The connectivity filter awards
matches of larger patches of surfaces. MS dots from the
ligand that are in contact with the receptor (“C” dots) are
grouped into connected regions. The size of a connected
component is defined as the number of “C” dots that belong
to that component. Largest components are sought, with
the threshold set such that the size of a “large” component
should be at least 10% of the size of the largest. The docked
conformations whose connected components (CC) size is at
least 5% of MSligand, are reported as potential solutions.
MSligand is the number of MS dots in the ligand (computed
at a density of 1 dot/Å2). The conectivity filter is employed
only for the protein–protein docking.

Wallqvist and Covell206 use an energetic criterion based
on surface burial. The free-energy approximation is de-
rived from their analysis of surface burial of atom pairs in
crystal complexes. They parameterize the occurrence of
specific atom-atom surface burial to mimic the free energy
of binding.

Pairwise amino acid and atom–atom contacts.
Pairwise amino acid contacts is a purely empirical term

derived from observed statistical frequency of amino acid
contacts in a database of well-resolved X-ray protein
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structures. There are two methods for calculating the
expected number of pairs between residues i and j: mole
fraction and contact fraction. Mole fraction is proportional
to the product of the fractional abundance of the two
residues in the pair. Contact fraction is proportional to the
propensities of the two residues to be paired with any
residue.228 The scoring function of both BiGGER113 and
Pair potentials228 uses the contact fraction method, how-
ever, in a slightly different way. The Pair potentials score
is the log fraction of the actual count divided by the
expected count, whereas the BiGGER score is the probabil-
ity of contact. The Moont et al.228 score is calculated as

scorei, j � scorej,i � log	ci, j /ei, j
 (1)

where ci, j is the residue level potential, defined as occur-
ring between residues i and j if the C� atoms in the two
residues are under a given cutoff. The value of the score for
each pair is considered as a statistical measure of the
likelihood of that pair occurring. Since this is a log fraction,
the total likelihood for the conformation is a summation of
all individual scores. The major difference between these
computational schemes is the type of pairwise potential
that were used and the dataset for the calculation. Only
one residue level potential is used (based on side-chain
atoms) in BiGGER, based on the atlas of protein side-chain
interactions.250 In contrast, Pair potentials use four types
of pairwise potentials: a residue level potential based on
C� atoms, a residue level potential based on all atoms, a
residue level potential based on all side-chain atoms and
an atom level potential. The difference between the resi-
due level potentials is in the atoms used for the definition
of pairing residues. The atom level potential is the occur-
rence of contacts between atom types i and j within a given
distance cutoff. Forty atom types were assigned according
to Melo and Feytmans.251

Wallqvist and Covell206 apply knowledge-based poten-
tial energy functions to solutions passing the first geometry-
based matching and overlap checks. Their pairwise-atom
type based potential functions have been separately de-
rived from a dataset of enzyme-inhibitors.252 In their
enzyme-inhibitors docking applications, Wallqvist and Cov-
ell206 apply the corresponding enzyme-inhibitor pair poten-
tial function set. The docking is carried out on “bound”
crystal complexes. Pairwise atom–atom potential func-
tions have also been derived by Weng et al.210 and used by
Camacho et al.148 as discussed above.

The derivation and utilization of knowledge-based pair-
wise potential functions for docking has its origin in
studies of protein folding.253 Subsequently, they were
applied to predict protein structures, particularly in fold
recognition.

Electrostatic interactions and solvation energy in
quick scan. Electrostatic interactions play a key role in
many aspects of proteins including binding.254 Well-
known cases in which electrostatics are important are
superoxide dismutase,255 trypsin-BPTI complex,254 and
the barstar-barnase system.256 Electrostatic potentials
can be calculated by a variety of programs: Delphi,257

GRASP,47 and UHBD (University of Houston Brownian

dynamics258). These programs solve the Poisson-Boltzman
equation for a protein–protein solvent system.246

Estimates of binding affinities based on simplified poten-
tial functions have been used in scoring.112,214,228 The
BiGGER algorithm113 uses atom point charges from the
Amber molecular mechanics force field. The electrostatic
interactions are calculated using point to point Coulombic
potential: Velec � k � QiQj(rij � c)2 where c is a dampening
constant added to the distance separating both nuclei. The
c constant is needed due to the allowance of limited
interpenetration of grid positions of both molecules. Some
atoms become unrealistically close to each other giving
rise to high interaction energies. The c constant is set to
the minimum distance allowed between two interacting
atoms. A value of 1.5 Å was used in BiGGER. A different
representation of electrostatic interactions was performed
using the FlexX algorithm.169 FlexX handles hydrophobic
ligand docking to proteins by placing ligand fragments. In
FlexX, interaction types and geometries describe the pro-
tein–ligand interactions. The interactions are divided into
3 levels according to the geometrical restriction of the
interaction. Level 3 interactions are salt bridges and
hydrogen bonds. Level 2 interactions are specific hydropho-
bic interactions between an aromatic ring center and
aromatic ring atoms, amides, or methyl groups. Level 1
interactions are non-specific hydrophobic contacts be-
tween aliphatic and aromatic carbon atoms. Level 1 inter-
actions are spherical with a radius of about 4 Å. As long as
a fragment contains interacting groups belonging to a
geometrically restrictive interaction type, these are pref-
ered. If the fragment has a very limited number of
interactions of this type, the algorithm starts using less
geometrically restrictive interaction types for the frag-
ment placement. In a data set of 200 hydrophobic ligands
there were, on average, 444 level 3, 167 level 2, and 325
level 1 interactions per complex.

Solvation energy in a scoring function was intensively
applied to the Fast Fourier Transform-based algorithm by
two groups.115,148 In the first Jackson et al.115 Implemen-
tation, the water solvent is described by a soft sphere
Langevin dipole model, with discrete dipoles that interact
with the electric field of the protein but subject to random
thermal fluctuations that reduce the effective electric field
at the dipole itself. van der Waals and field-dependent
hydrophobic terms are also included. If the energy for the
interaction (the solvation enthalpy) is greater than a 0
kcal/mol cutoff, the solution is excluded from further
consideration. This cutoff was chosen since the unfavor-
able vdW repulsion term quickly overcomes a favorable
electrostatic interaction. The authors found the soft sphere
treatment and fine grid spacing to be critical in reproduc-
ing observed solvation energies. Their energy refinement
consists of two steps: (1) Determination of side-chain
conformations. Side-chains are modeled according to a
rotamer library.108 A side-chain interacts with the protein
backbone and with probability-weighted average of the
surrounding protein side-chains and solvent molecules.
The presence of a particular water molecule at a particular
site around a side-chain rotamer is modeled probabilisti-
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cally and depends on the occupancy of that site by a
side-chain atom of any other amino acid side-chain. (2) A
rigid body energy minimization to relax the protein inter-
face. The resulting solutions are self-consistent. The en-
ergy refinement was applied to five cases of enzyme–
inhibitor and four cases of antibody–antigen docking. The
enzyme–inhibitor were more encouraging than the anti-
body–antigen results. We note that enzyme–inhibitor cases
typically obtain better results, in many docking schemes,
possibly owing to a high sequence (and structure) conserva-
tion and the concave shape of the binding site.

Camacho et al.229 have developed electrostatic and
desolvation free-energy maps. These maps essentially
show two different types of behavior: If there is a weak
electrostatic complementarity, the desolvation free-energy
map shows a well-defined minimum with a broad area of
attraction. However, in the case of oppositely charged
interfaces, there is a region of low electrostatic energy
surrounding the binding site. Here desolvation provides
further adhesion. If the electrostatics are strong, the
binding site can then be predicted by a minimum of
desolvation free energy at the low-electrostatic energy
region. Based on these, the authors suggest that either
desolvation free energy (in the case of neutral surfaces) or
the electrostatic energy (in the strongly charged surfaces
case) provide information on the relative orientation of the
two molecules, even prior to tight complex formation.
Nevertheless, it is important to note that here, as in the
Jackson et al.115 work above, near-native conformations
were used.

Consensus scoring and two-stage ranking

It is extremely difficult to reliably discriminate between
binding modes by a single algorithm. A combination of
several available ranking packages may, however, lead to
binding modes that top the scoring lists in most docking/
scoring combinations.33,259,260

Charifson et al.259 conducted an extensive computa-
tional study in which they show that combining scoring
functions in an intersection-based consensus approach
results in an enhancement in the ability to discriminate
between active and inactive enzyme inhibitors. An analy-
sis of two different docking methods and 13 scoring
functions provides insights into which functions perform
well, both singly and in combination. The consensus
scoring further provides a dramatic reduction in the
number of false positives identified by individual scoring
functions, leading to a significant enhancement in hit-
rates.

Similar approaches have also been taken by Bissantz et
al.33 and Terp et al.260 In Terp et al.’s study, eight different
scoring functions have been combined with the aim of
improving the prediction of protein-ligand binding confor-
mations and affinities. The obtained scores were analyzed
using multivariate statistical methods to generate expres-
sions, with the ability (1) to select the best candidate
between different docked conformations of an inhibitor
(MultiSelect) and (2) to quantify the protein-ligand bind-

ing affinity (MultiScore). In Bissantz et al.’s case, three
different database docking programs (Dock, FlexX, Gold)
have been used in combination with seven scoring func-
tions (Chemscore, Dock, FlexX, Fresno, Gold, Pmf, Score)
to assess the accuracy of virtual screening methods against
two protein targets (thymidine kinase, estrogen receptor)
with known three-dimensional structures. Even though
the consensus scoring improves the ranking hits, however,
as found by Bissantz et al.,33 no clear relationships could
be found between docking and ranking accuracies. More-
over, predicting the absolute binding free energy of true
hits was not possible regardless of the docking accuracy
that was achieved and the scoring function that was
used.23

Knowledge-based free-energy scoring functions were
used in docking.261,262 However, a promising ranking
scheme may involve simulation of the free energy using
either thermodynamic integration or continuum electro-
statics following the filtering stage.

Camacho et al.148 employ a two-step scoring algorithm.
The first step includes two rigid-body filters that use the
desolvation free energy and the electrostatic energy to
limit the number of docked conformations. The desolvation
free energy �GACE is calculated for all docked conforma-
tions where �GACE

min  GACE
min � CACE. �GACE

min is the lowest
�GACE found and CACE is an empirical threshold (in that
work chosen as 5 kcal/mol). �GACE is the atomic contact
energy (ACE), an extension of the quasi-chemical residue
pair-wise potential (Miyazawa and Jernigan253). In ACE,
they sum �i�jeij for all i, j that are up to 6 Å apart. The
authors note that their preference for �GACE rather than
�GACE � �Eelec is owing to the lower sensitivity to small
changes in the atomic positions, which the �Eelec term is
expected to show. In the next step, �Eelec is calculated. The
conformations selected have �Eelec  �Eelec

min � Celect, where
�Eelec

min is the lowest �Eelec and Celect is a threshold (Celect �
10 kcal/mol is the current value). The second filter is
designed to reject false positives. It minimizes the molecu-
lar mechanics energy of the structures and reranks them.
It employs a combined free-energy function that includes
electrostatics, solvation and van der Waals energy terms.
The CHARMM energy of the conformations that pass the
above filters are minimized using a large number (500 to
1,000) of steps of the adopted basis Newton-Raphson
minimization algorithm. The free energy is calculated as
�G � �GACE � �Eelec � �Evdw. These filters have been
tested on a set of docked decoys, generated by the Fast
Fourier correlation method for several protein complexes,
including protease-inhibitors and antibody-antigen.
DOT139 uses similar parameterization as used by Cama-
cho et al.148

In one of the last elegant contributions161 from Peter
Kollman, MD simulations are combined with MM-PBSA
(molecular mechanics Poisson-Boltzman/surface area) to
rank binding modes suggested by DOCK 4.0. One of the
exciting results from this simulation is that they predicted
a conformation with 1.1 Å RMSD of an HIV-1 RT inhibitor
before the cystal structure was published.
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Binding site information may be included in scoring

Knowledge of the location of the binding site on one or
both proteins drastically reduces the number of possible
solutions. Knowing specific binding site residues reduces
the search space even further. Information about active
site residues is sometimes available from site-directed
mutagenesis, chemical cross-linking, and phylogenetic
data.112,155 In the absence of experimental data, it is
sometimes possible to predict the correct binding site.263

Potential hydrogen bonding groups, enzyme clefts and
charged sites on a protein surface were all used for binding
site prediction.10,151–156,264 Structural comparisons with
molecules with known binding sites may also lead to
binding site identification. Since binding sites are at least
partially flexible, searches for part-flexible part-rigid sites
have also produced encouraging results.50–53 Algorithms
that predict the location of hinges and modes of mo-
tions,215,216 or those that carry out structural comparisons
of the protein family, in particular if they allow hinge
bending movements,181,182,265 should be useful as well.

Serine proteases and immunoglobulins represent sys-
tems where at least the major binding sites are known in
advance. The catalytic triad of the serine proteases (His,
Asp, Ser) and the CDR of immunoglobulins are both well
characterized.112 Three scoring functions for antibody-
antigen docking with varied filter stringency have been
suggested.112 These functions are based on analysis of
structural principles of antibody-antigen contacts.266 The
loose filter requires at least one contact between any part
of the antigen with the L3 or H3 CDRs of the antibody. The
medium filter requires at least one contact between any
part of the antigen with both L3 and H3 CDRs of the
antibody. The tight filter requires at least one contact
between an epitope residue of the antigen with both L3

and H3 CDRs of the antibody. Equivalent functions were
defined for serine protease inhibitor docking. This scoring
function was tested on 8 unbound cases. A loose biochemi-
cal filter successfully narrowed the solution number from
around 4,000 to a few hundred, within which was a
prediction with better than 2.5 Å rmsd for C� atoms of the
interface. Medium filtering reduced the total number of
predictions by an order of magnitude with respect to the
loose filter. The tight filter, on the other hand, does not
significantly further alter the number of false positives.112

Hu et al.238 have shown that in enzyme-inhibitors
residues are more conserved at the interfaces than at other
locations. This can explain why pairwise potential function
derived from enzyme–inhibitors are more successful when
applied to this same class. On the other hand, overall,
antibody-antigen interfaces have similar surface conserva-
tion as compared to their corresponding linear sequence
alignment, consistent with the suggestion that evolution
has optimized protein interfaces for function. This ex-
plains why lesser success is achieved in such an applica-
tion for the antibody-antigen class. However, Norel et
al.230 have used the fact that antibody binding sites are
enriched in tyrosines and tryptophans. Applying a filter
based on this enrichment has resulted in considerable
improvement in antibody-antigen complex prediction.

For rigid-body docking, knowledge of the location of the
binding site and of specific residues is extremely help-
ful.267,268 However, they can be run in the absence of such
information too.40,43,78,113,144,269 For algorithms employ-
ing detailed molecular dynamics calculations, knowledge
of the location of the binding site is absolutely essential.
Monte Carlo, or MD simulations, initiate by placing the
ligand in the active site,270,271 and often restrain its
movement away from the site. Flexible drug docking by

Fig. 4. Hotspots on the interfaces of 1hil chainH, using MUSTA.
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TABLE IVa. Some of the Available Pseudo Unbound Cases for
Predictive Heteroprotein Docking

Number Complex Receptor unbound Ligand unbound

Enzyme/inhibitor
1 1acb 4cha 1acb
2 1brc 1bra 1brc
3 1cho 4cha 1cho
4 1cse 1scd 1cse
5 1ppe 3ptn 1ppe
6 1sbn 1sup 1sbn
7 1sft 1ppn 1sft
8 1tab 3ptn 1tab
9 1tgs 1tgt 1tgs
10 2tec 1thm 2tec
11 4htc 2hnt 4htc
12 1udi 1udh 1udi

Antibody/antigen
1 1nca 1nca 7nn9
2 1nmb 1nmb 7nn9
3 1igc 1igc 1igd
4 1jel 1jel 1poh
5 3hfl 3hfl 1lza
6 3hfm 3hfm 1lza

Others
1 1atn 1atn 3dni
2 1gla 1gla 1f3g
3 1spb 1sup 1spb
4 2btf 2btf 1pne
5 3hhr 3hhr 1hgu

TABLE IVb. Some of the Available Unbound Cases for Predictive Heteroprotein Docking

Number Complex Receptor chain Ligand chain Receptor unbound Ligand unbound

Enzyme/inhibitor
1 1brb E I 1bra 1bpi,4pti,5pti,6pti
2 1cgi E I 1chg,2chg(AB) 1hpt
3 2kai AB I 2pka 1bpi,4pti,5pti,6pti
4 2ptc E I 3ptn,1tld,1bty 1bpi,4pti,5pti,6pti
5 2sic E I 1sup,2stl 3ssi
6 2sni E I 2sbt,isup 2ci2,1ypc
7 1brs A D 1a2p,1bao 1al9,1bta
8 1bvn P T 1pif 2ait
9 1cao ABC FGH DI 5cha(AB) 1app(AB)
10 2tgp,4pti Z I 1tgn 1bpi,4pti,5pti,6pti
11 1cbw ABC FGH DI 5cha(AB) 1bpi,4pti,5pti,6pti
12 1cho E I 5cha(AB) 2ovo
13 1hia AB XY IJ 1ao5 1bx8
14 1ugh E I 1akz 1ugi(A)
15 1brc E I 1bra 1aap(AB)
16 1dfj E I 2bnh 7rsa

Antibody/antigen
1 1mlc ABCD EF 1mlb 1lza,1lyz,6lyz,3lzt
2 1vfb AB C 1vfa 1lza,1lyz,6lyz,3lzt
3 1fdl LH Y 3hfl(LH) 1lza,1lyz,6lyz,3lzt
4 3hfm LH Y 1hfm 5lym(A) 5lym(B)
5 1ahw ABDE CF 1fgn(LH) 1boy
6 1bvk AB C 1bvl(AB) 1lza,1lyz,6lyz,3lzt
7 1dqi AB C 1dqq(AB) 1lza,1lyz,6lyz,3lzt

Others
1 1mda LH A 2bbk 1aan
2 4hvp A B 3hvp 3hvp
3 1fss A B 2ace 1fsc
4 2pcb AC B 1ccp 1hrc
5 2pcc AC B 1ccp 1ycc
6 1wej LH F 1qbl(LH) 1hrc
7 1avz A C 1avv 1shf(A)
8 1wql Q R 1wer 5p21
9 1bdj A B 3chy 2a0b



other algorithms (e.g., by DOCK) whether fragment-wise,
using ensembles, or flexible drugs picked from the drug
database,45,67,95,116 also invariably assume knowledge of
the binding site on the protein surface (see the discussion
on small molecule docking for details).

Binding hot spots may also be incorporated in the
scoring process. Hot spots can be defined as a small subset
of residues that contribute to the binding energy more
than can be expected from an even distribution across the
interface.232 The energetic contribution of individual side-
chains was experimentally examined via alanine scanning
mutagenesis.272 By combining the alanine scanning with
kinetic and thermodynamic measurements, it has been
shown that, despite the large size of the binding interfaces,
single residues can contribute a large fraction of the
binding free energy in an interface.233,234 In a computa-
tional study on families of protein–protein interfaces, Hu
et al.238 have confirmed and generalized the alanine
scanning data analysis, which was of a limited size. These
hot-spot conserved residues have been detected consis-
tently in all interface families. Figure 4 illustrates the hot
spots in a family of protein interfaces. Here, the MUSTA
(MUltiple STructure alignment algorithm)173,231 has been
used for the alignment. A cluster of hot spots appears to be
a good indication of the presence of a binding epitope on
the protein surface (Elkayam et al, unpublished results).

CONCLUSIONS

The so-called computational molecular docking problem
is far from being solved.2–8,273 Nevertheless, despite the
drawbacks in each docking strategy, significant progress
has been made. First, rigid-body algorithms have been
remarkably successful,15,40,113,274 especially in addressing
the protein–protein docking problem, even in the absence
of knowledge of the binding site, if the conformational
change is limited to surface side-chain atoms. These are
handled via a “soft” surface belt. Second, it is apparent
that “docking in steps” is a promising strategy. A computa-
tional design where initial rigid-body, entire-surface match-
ing algorithm is applied followed by a dynamic method
that can overcome the energy barriers in a reasonable
time, such as the pseudo-Brownian algorithm,214 is one
such possibility. Nevertheless, here too, since the sampling
initiates from rigid-body docking, backbone movements
are limited. Third, an algorithm that can carry out docking
allowing hinge-bending motions has been developed.101–105

However, there the hinges need prepicking, and the do-
mains are held rigid. Application of such an algorithm,
followed by, e.g., the pseudo-Brownian algorithm,214 might
be successful, sampling the conformational space more
extensively275 if likely hinges can be automatically picked.
Fourth, docking of ensembles, especially also allowing
combination of conformers to increase the sampling,63 is
an approach founded on the physical behavior of molecules
in solution. These multistep approaches initiate by dock-
ing the conserved parts, followed by the more variable
ones.63,96,97,196 Currently these can handle only a limited
extent of backbone flexibility. Nevertheless, combined
with hinge-bending motion algorithms, possibly such an

extension is feasible. Likely hinges can be picked through
multiple structural comparison algorithms, allowing
hinges. Since topologically related proteins show similar
large- and small-scale motions, protein families can be
used for this purpose. Alternatively, the ensembles may
derive from simulations.

The second major bottle-neck is the availability of
selective and efficient scoring functions. To address this
critical hurdle, additional large-scale combined stud-
ies31–33,259,260 are likely to help in making a good choice.
Yet, it should be borne in mind that two different types of
scoring schemes are needed. The first are for global
searches. These should be fast and empirical,276–278 course-
graining and filtering the solutions. The second are the
more detailed free-energy simulations, initiating from
given likely conformations. For the first, deriving likely
binding sites on the protein surface should be immensely
useful. In identifying binding epitopes, not only the “classi-
cal” parameters of geometry and conservation in families
should be considered. Additionally, the presence of hot
spots238 and flexibility7,52,54,69,279,280 can prove to be
tremendously useful. With such initial information,
additional free-energy calculations might be used as
a reliable index for identifying correct binding
modes.140,148,160,161,227,230

High throughput docking has been used extensively in
library design. The practice has been extended from
docking a single protein to a ligand library to evaluation of
multiple receptor libraries against multiple targets.281–283

Computational generation of protein structures and the
docking of modeled protein structures with potential inter-
acting partners will have great impact on the life sciences.
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APPENDIX A
DRUF: Docking Results Unified Format

The presentation of results by the different methods is
quite variable. For example, there are at least 32 different
theoretical methods for calculation of a solution rmsd with
regard to the complex. The superposition can refer to both
the receptor and the ligand or the ligand alone, to all atoms

or only C� atoms. After the transformation of the predicted
relative to the bound complex is computed, the rmsd can be
calculated for the ligand alone or for both receptor and the
ligand, the entire molecule or only the interface, for all
atoms or only C�. Overall, there are 5 parameters with 2
options for each of them. Not all of these methods make
sense, and accordingly not all of them are used.

In order to enable comparison between docking methods
and eliminate the need for repeating detailed protocols, a
Docking Results Unified Format (DRUF) is suggested
below. We recommend that the rmsd calculation should be
performed by superimposing the C� atoms of the unbound
receptor on the bound receptor. C� atoms of the entire
ligand molecule will be considered for distance measure-
ments. DRUF includes different parameters. The parame-
ters are divided into 3 groups: simple rmsd data, relative
rmsd data, residue contacts, and binding residue predic-
tion data.

Simple rmsd data

1. Highest rank rmsd: The rmsd of the highest-ranking
solution with rmsd less than 5Å from the complex.

2. Highest rank: The rank of the highest-ranking solution
with rmsd less than 5Å. The highest rank parameter
together with the highest rank rmsd is an indication of
the optimal performance that can be expected from the
docking scheme.

3. Best rmsd: The rmsd of the lowest rmsd solution. The
best rmsd parameter is an indication of the optimal
performance that can be expected from the search
stage.

4. Rank of best rmsd: The rank of the lowest rmsd
solution. This parameter, like the complex rank param-
eter, is an indication of the scoring function quality

5. N10: The number of solutions with rmsd less than 3A
among the 10 highest ranked solutions. N10, like N50
and N100, is the most accurate parameter for evalua-
tion of the entire docking scheme, both search and
scoring stages. It is more stable than the highest and
the best parameters since it refers to a fixed number of
solutions as opposed to a single solution out of an
uneven number of solutions. The total solution number
of different algorithms can differ significantly. The
number of solutions can vary up to an order of magni-
tude for different docking cases using the same docking
scheme. For example, the number of solutions after
clustering varied between 1,200 to 11,475 using the
same Shape Complementarity scheme (Norel et al.40).
This typically depends on the molecular size.

6. N50: The number of solutions with rmsd less than 4A
among the 50 highest ranked solutions.

7. N100: The number of solutions with rmsd less than 5A
among the 100 highest ranked solutions. Here, and in
the N10 and N50, the number of solutions can be
replaced by the number of clusters.

Relative rmsd data

1. Complex rank: The rank of the known complex. This
parameter indicates more than any other parameter
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the scoring function quality. Unlike N10, N50, and
N100, this parameter does not depend on the quality of
the search stage, but on the goodness of the emerging
solutions.

2. Unbound rmsd: The rmsd of the unbound ligand after
superimposition on the bound ligand. This parameter is
indicative of the difficulty degree of the studied case. A
high unbound rmsd indicates significant changes be-
tween the bound and the unbound states.

3. Hyper highest rank rmsd: The difference between the
highest rank rmsd and the unbound rmsd. The hyper-
highest rank rmsd parameter is more informative than
the highest rank rmsd. Since each unbound case differs
from the bound case to a different extent (reflected by
the unbound rmsd parameter), one can expect to find
differences in the highest rmsd parameter as a function
of the unbound rmsd. High unbound rmsd is expected to
accompany high values of the highest rank rmsd. The
hyper highest rank rmsd is the normalized parameter.

4. Hyper best rmsd: The difference between the best rmsd
and the unbound rmsd. The hyper-best rmsd is the
normalized version of the best rmsd parameter just as
the hyper-highest rank rmsd is the normalized version
of the highest rank rmsd parameter.

Binding residue prediction data and C� contacts at a
threshold distance are also measures to be considered.

The number of solutions and the ranking achieved in
some common methods, where data are available on the
same cases, are given in Table IIIa (for the bound cases)
and in Table IIIb for the unbound cases.

APPENDIX B
Available Data Base for Protein-Protein Predictive
Docking

One of the major problems regarding predictive docking
is the limited number of complex structures. Currently
there are about 100 protein complexes in the PDB. Only 39
of them have an unbound structure (either native or

pseudo native) of at least one of the components in the
complex, and only 8 of them have an unbound structure of
both complex components (Janin and Chothia, 199079).
The available cases for predictive heteroprotein docking
are summarized in Table IVa,b. The available complexes
can be divided into four groups: (1) Enzyme-Inhibitor (EI);
(2) Antibody-Antigen (AA); (3) Subunit–Subunit (SS); (4)
Receptor-Ligand (RL). The division into these groups is
essential since complexes in different groups exhibit intrin-
sically different interaction characteristics. It has been
suggested that EI and AA complexes represent two differ-
ent classes of binding (Lawrence and Colman278). Accord-
ing to Jackson,208 EI complexes and AA complexes differ in
the interaction mechanism, the residue types that contrib-
ute to the interaction, and the binding affinity. EI com-
plexes interact through a main-chain–main-chain mecha-
nism, with six types of residues contributing 70% of the
interaction energy, and their binding affinity is of nanomo-
lar order. AA complexes interact through a side-chain–
main-chain mechanism. Diversified types of residues con-
tribute to the interaction energy, and their binding affinity
is of fentomolar order. Another major difference between
EI and AA complexes is the role of shape correlation.
Enzymes and their inhibitors have coevolved to form an
interface with a high degree of surface complementarity.
On the other hand, the immune system produces many
different antibodies in response to an antigen, some of
which bind quite poorly. So a particular AA complex does
not necessarily possess the best possible binding interface.
Shape correlation may not be as important in AA com-
plexes (Jackson et al.115). This might provide an explana-
tion for the success of all research groups in the first
docking challenge of b-lactamase/inhibitor complex
(Strynadka et al.279), in contrast to the collective failure in
the second docking challenge of antibody/haemagglutinin
complex (Dunbrack et al.273). The complexes are not
equally dispersed between these groups. Most of the
complexes are EI complexes, mainly serine protease inhib-
itor complexes.
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