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Abstract
Treating flexibility in molecular docking is a major challenge in cell biology research. Here we
describe the background and the principles of existing flexible protein-protein docking methods,
focusing on the algorithms and their rational. We describe how protein flexibility is treated in
different stages of the docking process: in the preprocessing stage, rigid and flexible parts are
identified and their possible conformations are modeled. This preprocessing provides information
for the subsequent docking and refinement stages. In the docking stage, an ensemble of pre-
generated conformations or the identified rigid domains may be docked separately. In the
refinement stage, small-scale movements of the backbone and side-chains are modeled and the
binding orientation is improved by rigid-body adjustments. For clarity of presentation, we divide
the different methods into categories. This should allow the reader to focus on the most suitable
method for a particular docking problem.
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Introduction
Most cellular processes are carried out by protein-protein interactions. Predicting the three-
dimensional structures of protein-protein complexes (docking) can shed light on their
functional mechanisms and roles in the cell. Understanding and modeling the bound
configuration are major scientific challenges. The structures of the complexes provide
information regarding the interfaces of the proteins and assist in drug design. Docking can
assist in predicting protein-protein interactions, in understanding signaling pathways and in
evaluating the affinity of complexes.

Upon binding, proteins undergo conformational changes that include both backbone and
side-chain movements1. Backbone flexibility can be divided into two major types: large-
scale domain motions, such as “shear” and “hinge-bending” motion (Figure 1 (a-d)), and
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disordered regions such as flexible loops (Figure 1 (e)). The first docking methods treated
proteins as rigid bodies in order to reduce the search space for optimal structures of the
complexes2, 3. However, ignoring flexibility could prevent docking algorithms from
recovering native associations. Accounting for flexibility is also essential for the accuracy of
the solutions. In addition, flexibility must also be taken into account if the docked structures
were determined by homology modeling4 or if loop conformations were modeled5.

Incorporating flexibility in a docking algorithm is much more difficult than performing
rigid-body docking. The high number of degrees of freedom not only significantly increases
the running time, but also results in a higher rate of false-positive solutions. These must be
scored correctly in order to identify near-native results6. Consequently, existing docking
methods limit the flexibility to certain types of motions. In addition, many of these methods
allow only one of the proteins in the complex to be flexible.

The general scheme of flexible docking can be divided into four major stages as depicted in
Figure 2. The first is a preprocessing stage. In this stage the proteins are analyzed in order to
define their conformational space. An ensemble of discrete conformations can be generated
from this space and used in further cross-docking, where each protein conformation is
docked separately. This process simulates the conformational selection model7, 8. The
analysis can also identify possible hinge locations. In this case the proteins can be divided
into their rigid parts and be docked separately. The second is a rigid-docking stage. The
docking procedure aims to generate a set of solution candidates with at least one near-native
structure. The rigid docking should allow some steric clashes because proteins in their
unbound conformation can collide when placed in their native interacting position. The next
stage, called refinement, models an induced fit9. In this stage each candidate is optimized by
small backbone and side-chain movements and by rigid-body adjustments. It is difficult to
simultaneously optimize the side-chain conformations, the backbone structure and the rigid-
body orientation. Therefore, the three can be optimized in three separately repeated
successive steps. The resulting refined structures have better binding energy and hardly
include steric clashes. The final stage is scoring. In this stage the candidate solutions are
scored and ranked according to different parameters such as binding energy, agreement with
known binding sites, deformation energy of the flexible proteins, and existence of energy
funnels10, 11. The goal of this important stage is to identify the near-native solutions among
the candidates. In this review we do not address the scoring function problem. A detailed
review of scoring schemes was published by Halperin et al.3.

Two flexible docking reviews were published recently12, 13. These articles present a variety
of docking methods that incorporate protein flexibility. However, we believe that a more
detailed and comprehensive review would be useful for the docking community. Our review
provides a description of the computational algorithms behind the docking methods. The
division into categories used in this article can help the reader choose the most suitable
method for a particular docking problem.

Our review includes three major parts, corresponding to different flexible docking
procedures. The first part describes protein flexibility analysis methods. The second part
discusses the treatment of backbone flexibility in current docking algorithms. The third,
side-chain refinement part reviews methods for prediction of bound side-chain
conformations. Finally, existing methods that handle both backbone and side-chain
flexibility are described.

2 Protein Flexibility Analysis
Protein flexibility analysis methods, reviewed below, can be classified into three major
categories:
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1 Methods for generating an ensemble of discrete conformations. Ensembles
of conformations are widely used in cross-docking and in the refinement
stage of the docking procedure. The different conformations can be created
by analyzing different experimentally solved protein structures or by using
Molecular Dynamics (MD) simulation snapshots.

2 Methods for determining a continuous protein conformational space. The
conformational space can be used as a continuous search space for
refinement algorithms. In addition, many flexible docking methods sample
this pre-calculated conformational space in order to generate a set of
discrete conformations This group of methods includes Normal Modes
Analysis (NMA) and Essential Dynamics.

3 Methods for identifying rigid and flexible regions in the protein. These
methods include the rigidity theory and hinge detection algorithms.

2.1 Conformational Ensemble Analysis
Using different solved 3D structures (by X-ray and NMR) of diverse conformations of the
same protein, or of homologous proteins, is probably the most convenient way to obtain
information relating to protein flexibility. Using such conformers, one can generate new
viable conformations which might exist during the transition between one given
conformation to another. These new conformations can be generated by “morphing”
techniques14, 15 which implement linear interpolations, but have limited biological
relevance.

Known structures of homologs or of different conformations of the same protein can also be
useful in detecting rigid domains and hinge locations. Boutonnet et al.16 developed one of
the first methods for an automated detection of hinge and shear motions in proteins. The
method uses two conformations of the same protein. It identifies structurally similar
segments and aligns them. Then, the local alignments are hierarchically clustered to generate
a global alignment and a clustering tree. Finally the tree is analyzed to identify the hinge and
shear motions. The DynDom method17 uses a similar clustering approach for identifying
hinge points using two protein conformations. Given the set of atom displacement vectors,
the rotation vectors are calculated for each short backbone segment. A rotation vector can be
represented as a rotation point in a 3D space. A domain that moves as a rigid-body will
produce a cluster of rotation points. The method uses the K-means clustering algorithm to
determine the clusters and detect the domains. Finally, the hinge axis is calculated and the
residues involved in the inter-domain bending are identified.

The HingeFind18 method can also analyze structures of homolog proteins in different
conformations and detects rigid domains, whose superimposition achieves RMSD of less
than a given threshold. It requires sequence alignment of two given protein structures. The
procedure starts with each pair of aligned Cα atoms and iteratively tries to extend them by
adding adjacent Cα atoms as long as the RMSD criterion holds. After all the rigid domains
are identified, the rotation axes between them are calculated. Verbitsky et al.19 used the
geometric hashing approach to align two molecules, and detect hinge-bent motifs. The
method can match the motifs independently of the order of the amino acids in the chain. The
more advanced FlexProt method20, 21 searches for 3D congruent rigid fragment pairs in
structures of homolog proteins, by aligning every Cα pair and trying to extend the 3D
alignment, in a way similar to HingeFind. Next, an efficient graph-theory method is used for
the connection of the rigid parts and the construction of the full solution with the largest
correspondence list, which is sequence-order dependent. The construction simultaneously
detects the locations of the hinges.
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2.2 Molecular Dynamics
Depending on the time scales and the barrier heights, molecular dynamics simulations can
provide insight into protein flexibility. Molecular dynamics (MD) simulations are based on a
force field that describes the forces created by chemical interactions22. Throughout the
simulation, the motions of all atoms are modeled by repeatedly calculating the forces on
each atom, solving Newton's equation and moving the atoms accordingly. Di Nola et al. 23,
24 were first to incorporate explicit solvent molecules into MD simulations while docking
two flexible molecules. Pak et al.25 applied MD using Tsallis effective potential26 for the
flexible docking of few complexes.

Molecular Dynamics simulations require long computational time scales and therefore are
limited in the motion amplitudes. For this reason they can be used for modeling only
relatively small-scale movements, which take place in nanosecond time scales, while
conformational changes of proteins often occur over a relatively long period of time (∼ 1
ms)27, 28. One way to speed up the simulations is by restricting the degrees of freedom to
the torsional space, which allows larger integration time steps29. Another difficulty is that
the existence of energy barriers may trap the MD simulation in certain conformations of a
protein. This problem can be overcome by using simulated annealing30 and scaling
methods31 during the simulation. For example, simulated annealing MD is used in the
refinement stage of HADDOCK32, 33 in order to refine the conformations of both the side-
chains and the backbone. Riemann et al. applied potential scaling during during MD
simulations to predict side chain conformations34.

In order to sample a wide conformational space and search for conformations at local
minima in the energy landscape, biased methods, which were previously reviewed35, can be
used. The flooding technique36, which is used in the GROMACS method37, fills the “well”
of the initial conformation in the energy landscape with a Gaussian shape “flooding”
potential. Another similar method, called puddle-jumping38, fills this well up to a flat
energy level. These methods accelerate the transition across energy barriers and permit
scanning other stable conformations.

2.3 Normal Modes
Normal Modes Analysis (NMA) is a method for calculating a set of basis vectors (normal
modes) which describes the flexibility of the analyzed protein39, 40, 41. The length of each
vector is 3 N, where N is the number of atoms or amino acids in the protein, depending on
the resolution of the analysis. Each vector represents a certain movement of the protein such
that any conformational change can be expressed as a linear combination of the normal
modes. The coefficient of a normal mode represents its amplitude.

A common model used for normal modes calculation is the Anisotropic Network Model
(ANM), which was previously described in detail40, 42. This is a simplified spring model
which relies primarily on the geometry and mass distribution of a protein (Figure 3). Every
two atoms (or residues) within a distance below a threshold are connected by a spring
(usually all springs have a single force constant). The model treats the initial conformation
as the equilibrium conformation.

The normal modes describe continuous motions of the flexible protein around a single
equilibrium conformation. Theoretically, this model does not apply to proteins which have
several conformational states with local free-energy minima. However, in practice, normal
modes suit very well conformational changes observed between bound and unbound protein
structures43. Another advantage of the normal modes analysis is that it can discriminate
between low and high frequency modes. The low frequency modes usually describe the
large scale motions of the protein. It has been shown44, 43 that the first few normal modes,
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with the lowest frequencies, can describe much of a conformational change. This allows
reducing the degrees of freedom considerably while preserving the information about the
main characteristics of the protein motion. Therefore many studies45, 46, 47 use a subset of
the lowest frequency modes for analyzing the flexibility of proteins. The normal modes can
further be used for predicting hinge-bending movements48, for generating an ensemble of
discrete conformations49 and for estimating the protein's deformation energy resulting from
a conformational change50, 51.

Tama and Sanejouand44 showed that normal modes obtained from the open form of a
protein correlate better with its known conformational changes, than the ones obtained from
its closed form. In a recent work, Petrone and Pande43 showed that the first 20 modes can
improve the RMSD to the bound conformation by only up to 50%. The suggested reason
was that while the unbound conformation moves mostly according to low frequency modes,
the binding process activates movements related to modes with higher frequencies.

The binding site of proteins often contains loops which undergo relatively small
conformational changes triggered by an interaction. This phenomenon is common in protein
kinase binding pockets. Loop movements can only be characterized by high-frequency
normal modes. Therefore, we would like to identify the modes which influence these loops
the most, in order to focus on these in the docking process. For this reason, Cavasotto et al.
52 have introduced a method for measuring the relevance of a mode to a certain loop. This
measure of relevance favors modes which bend the loop at its edges, and significantly
moves the center of the loop. It excludes modes which distort the loop or move the loop
together with its surroundings. This measure was used to isolate the normal modes which are
relevant to loops within the binding sites of two cAMP-dependent protein kinases (cAPKs).
For each loop less than 10 normal modes were found to be relevant, and they all had
relatively high frequencies. These modes were used for generating alternative conformations
of these proteins, which were later used for docking. The method succeeded in docking two
small ligands which could not be docked to the unbound conformations of the cAPKs due to
steric clashes.

Since NMA is based on an approximation of a potential energy in a specific starting
conformation, its accuracy deteriorates when modeling large conformational changes.
Therefore in some studies, the normal modes were recomputed after each small
displacement53, 54, 55. This is an accurate but time-consuming method. Kirillova et al.56
have recently developed an NMA-guided RRT method for exploring the conformational
space spanned by 10-30 low frequency normal modes. This efficient method require a
relatively small number of normal modes calculations to compute large conformational
changes.

The Gaussian Network Model (GNM) is another simplified version of normal modes
analysis57, 58 The GNM analysis uses the topology of the spring network for calculating the
amplitudes of the normal modes and the correlations between the fluctuations of each pair of
residues. However, the direction of each fluctuation cannot be found by GNM. This analysis
is more efficient both in CPU time and in memory than the ANM analysis and therefore it
can be applied on larger systems. The drawback is that the GNM calculates relatively partial
information on the protein flexibility.

The HingeProt algorithm48 analyzes a single conformation of a protein using GNM, and
predicts the location of hinges and rigid parts. Using the two slowest modes, it calculates the
correlation between the fluctuations of each pair of residues, i.e. their tendency to move in
the same direction. A change in the sign of the correlation value between two consecutive
regions in the protein suggests a flexible joint that connects rigid units.
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2.4 Essential Dynamics
The Essential Dynamics approach aims at capturing the main flexible degrees of freedom of
a protein, given a set of its feasible conformations59. These degrees of freedom are
described by vectors which are often called essential modes, or principal components (PC).
The conformation set is used to construct a square covariance matrix (3N × 3N, where N is
the number of atoms) of the deviation of each atom coordinates from its unbound position
or, alternatively, average position. This matrix is then diagonalized and its eigenvectors and
eigenvalues are found. These eigenvectors represent the principal components of the protein
flexibility. The bigger the eigenvalues, the larger the amplitude of the fluctuation described
by its eigenvector.

Mustard and Ritchie60 used this essential dynamics approach to generate realistic starting
structures for docking, which are called eigenstructures. The covariance matrix was created
according to a large number of conformations, generated using the CONCOORD
program61, which randomly generates 3D protein conformations that fulfill distance
constraints. The eigenvectors were calculated and it has been shown60 that the first few of
these (with the largest eigenvalues) can account for many of the backbone conformational
changes that occurred upon binding in seven different CAPRI targets from rounds 3-562.
Linear combinations of the first eight eigenvectors were later used to generate
eigenstructures from each original unbound structure of these CAPRI targets. An experiment
that used these eigenstructures in rigid docking showed improvements in the results
compared to using the unbound structure or a model-built structure60. An ensemble of
conformations can be generated in a similar way by the Dynamite software63, which also
applies the essential dynamics approach on a set of conformations generated by
CONCOORD.

Principle component analysis (PCA) can also be based on molecular dynamics simulations.
Unlike normal mode analysis, this PCA includes the effect of the surrounding water on the
flexibility. However, the results of the analysis strongly depend on the simulation's length
and convergence. It has been shown that most of the conformational fluctuations observed
by MD simulations59 and some known conformational changes between unbound and
bound forms64, can be described with only few PCs.

2.5 Rigidity Theory
Jacobs et al.65 developed a graph-theory method which analyzes protein flexibility and
identifies rigid and flexible substructures. In this method a network is constructed according
to distance and angle constraints, which are derived from covalent bonds, hydrogen bonds
and salt bridges within a single conformation of a protein. The vertices of the network
represent the atoms and the edges represent the constraints. The analysis of the network
resembles a pebble game. At the beginning of the algorithm, each atom (vertex) receives
three pebbles which represent three degrees of freedom (translation in 3D). The edges are
added one by one and each edge consumes one pebble from one of its vertices, if possible. It
is possible to rearrange the pebbles on the graph as long as the following rules hold: (1)
Each vertex is always associated with exactly three pebbles which can be consumed by
some of its adjacent edges. (2) Once an edge consumes a pebble it must continue holding a
pebble from one of its vertices throughout the rest of the algorithm. At the end of the
algorithm the remaining pebbles can still be rearranged but the specified rules divide the
protein into areas in such a way that the pebbles can not move from one area to another.

The number of remaining degrees of freedom in a certain area of the protein quantifies its
flexibility. For example, a rigid area will not possess more than 6 degrees of freedom (which
represent translation and rotation in 3D). The algorithm can also identify hinge points, and
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rigid domains which are stable upon removal of constraints like hydrogen-bonds and salt
bridges. This pebbles-game algorithm is implemented in a software called FIRST (Floppy
Inclusion and Rigid Substructure Topography) which analyzes protein flexibility in only a
few seconds of CPU time. The algorithm was tested on HIV protease, dihydrofolate
reductase and adenylate kinase and was able to predict most of their functionally important
flexible regions, which were known beforehand by X-ray and NMR experiments.

3 Handling Backbone Flexibility in Docking Methods
Treating backbone flexibility in docking methods is still a major challenge. The backbone
flexibility adds a huge number of degrees of freedom to the search space and therefore
makes the docking problem much more difficult. The docking methods can be divided into
four groups according to their treatment of backbone flexibility. The first group uses soft
interface during the docking and allows some steric clashes in the resulting complex models.
The second performs an ensemble docking, which uses feasible conformations of the
proteins, generated beforehand. The third group deals with hinge bending motions, and the
last group heuristically searches for energetically favored conformations in a wide
conformational search space.

3.1 Soft Interface
Docking methods that use soft interface actually perform relatively fast rigid-body docking
which allows a certain amount of steric clashes (penetration). These methods can be divided
into three major groups: (i) brute force techniques66, 67, 68 that can be significantly
speeded up by FFT69, 70, 71, 72, 73, 74, (ii) randomized methods75, 10 and (iii) shape
complementarity methods76, 77, 78, 79, 80. This approach can only deal with side chain
flexibility and small scale backbone movements. It is assumed that the proteins are capable
of performing the required conformational changes which avoid the penetrations, although
the actual changes are not modeled explicitly. Since the results of this soft docking usually
contain steric clashes, a further refinement stage must be used in order to resolve them.

3.2 Ensemble Docking
In order to avoid the search through the entire flexible conformational space of two proteins
during the docking or refinement process, the ensemble docking approach samples an
ensemble of different feasible conformations prior to docking. Next, docking of the whole
ensemble is performed. The different conformations can be docked one by one (cross-
docking), which significantly increases the computational time, or all together using
different algorithms such as the mean-field approach presented below.

The ensemble may include different crystal structures and NMR conformers of the protein.
Other structures can be calculated using computational sampling methods which are derived
from the protein flexibility analysis (molecular dynamics, normal modes, essential
dynamics, loop modeling, etc). Feasible structures can also be sampled using random-search
methods such as Monte-Carlo and genetic algorithms.

The search for an optimal loop conformation can be performed during the docking
procedure by the mean-field approach. In this method, a set of loop conformations is
sampled in advance and each conformation is initialized by an equal weight. Throughout the
docking, in each iteration, the weights of the conformations (copies) change according to the
Boltzmann criterion, in a way that a conformation receives a higher weight if it achieves a
lower free energy. The partner and the rest of the protein which interact with the loop “feel”
the weighted average of the energies of their interactions with each conformation in the set.
The algorithm usually converges to a single conformation for each loop, with a high
weight81.
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Bastard et al.81 used the mean-field approach in their MC2 method which is based on
multiple copy representation of loops and Monte Carlo (MC) conformational search. Viable
loop conformations were created using a combinatorial approach, which randomly selected
common torsional angles for the loop backbone. In each MC step the side-chains dihedral
angles and the rotation and translation variables are randomly chosen. Then, the weight of
each loop is adjusted according to its Boltzmann probability. The performance of the MC2
algorithm was evaluated81 on the solved protein-DNA complex of a Drosophila Prd-paired-
domain protein, which interacts with its target DNA segment by a loop of seven residues82.
23% of the MC2 simulations produced results in which the RMSD was lower than 1.5Å and
included the selection of a loop conformation which was extremely similar to the native one.
Furthermore, these results got much better energy scores than the other 77%, therefore they
could be easily identified.

In a later work83, the mean-field approach was introduced in the ATTRACT software and
was tested on a set of eight protein-protein complexes in which the receptor undergoes a
large conformational change upon binding or its solved unbound structure has a missing
loop at its interaction site. The results showed that the algorithm improved the docking
significantly compared to rigid docking methods.

3.3 Modeling Hinge Motion
Hinge-bending motions are common during complex creation. Hinges are flexible segments
which separate relatively rigid parts of the proteins, such as domains or subdomains.

Sandak et al.84, 85 introduced a method which deals with this type of flexibility. The
algorithm allows multiple hinge locations, which are given by the user. Hinges can be given
for only one of the interacting proteins (e.g. the ligand). The algorithm docks all the rigid
parts of the flexible ligand simultaneously, using the geometric hashing approach.

The FlexDock algorithm86, 87 is a more advanced method for docking with hinge-bending
flexibility in one of the interacting proteins. The locations of the hinges are automatically
detected by the HingeProt algorithm. The number of hinges is not limited and does not
affect the running time complexity. However, the hinges must impose a chain-type topology,
i.e. the subdomains separated by the hinges must form a linear chain. The algorithm divides
the flexible protein into subdomains at its hinge points. These subdomains are docked
separately to the second protein by the PatchDock algorithm77. Then, an assembly graph is
constructed. Each node in the graph represents a result of a subdomain rigid docking (a
transformation), and the node is assigned a weight according to the docking score. Edges are
added between nodes which represent consistent solutions of consecutive rigid subdomains.
An edge weight corresponds to the shape complementarity score between the two
subdomains represented by its two nodes. Finally, the docking results of the different
subdomains are assembled to create full consistent results for the complex using an efficient
dynamic programming algorithm that finds high scoring paths in the graph. This approach
can cope with very large conformational changes. Among its achievements, it has predicted
the bound conformation of calmodulin to a target peptide, the complex of Replication
Protein A with a single stranded DNA as shown inFigure 4, and has created the only
acceptable solution for the LicT dimer at the CAPRI challenge (Target 9)86.

Ben-Zeev et al.88 have coped with the CAPRI challenges which included domain
movements (Target 9, 11 and 13) by a rigid body multi-stage docking procedure. Each of the
proteins was partitioned into its domains. Then, the domains of the two proteins were
docked to each other in all possible order of steps. In each step, the current domain was
docked to the best results from the previous docking step.
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This multistage method requires that the native position of a subdomain will be ranked high
enough in each step. This restriction is avoided in the FlexDock algorithm which in the
assembling stage uses a large number of docking results for each subdomain. Therefore a
full docking result can be found and be highly ranked even if its partial subdomain docking
results were poorly ranked.

3.4 Refinement and Minimization Methods for Treating Backbone Flexibility
Fitzjohn and Bates89 used a guided docking method, which includes a fully flexible
refinement stage. In the refinement stage CHARMM22 all-atom force field was used to
move the individual atoms of the receptor and the ligand. In addition, the forces acting on
each atom were summed and converted into a force on the center-of-mass of each molecule.

Lindahl and Delarue introduced a new refinement method90 for docking solutions which
minimizes the interaction energy in a complex along 5-10 of the lowest frequency normal
modes' directions. The degrees of freedom in the search space are the amplitudes of the
normal modes, and a quasi-Newtonian algorithm is used for the energy minimization. The
method was tested on protein-ligand and protein-DNA complexes and was able to reduce the
RMSD between the docking model and the true complex by 0.3-3.6Å.

In a recent work, May and Zacharias51 accounted for global conformational changes during
a systematic docking procedure. The docking starts by generating many thousands of rigid
starting positions of the ligand around the receptor. Then, a minimization procedure is
performed on the six rigid degrees of freedom and on five additional degrees of freedom
which account for the coefficients of the five, pre-calculated, slowest frequency normal
modes. The energy function includes a penalty term that prevents large scale deformations.
Applying the method to several test cases showed that it can significantly improve the
accuracy and the ranking of the results. However the side-chain conformations must be
refined as well. The method was recently incorporated into the ATTRACT docking
software.

A new data structure called Flexibility Tree (FT) was recently presented by Zhao et al.91.
The FT is a hierarchical data structure which represents conformational subspaces of
proteins and full flexibility of small ligands. The hierarchical structure of this data structure
enables focusing solely on the motions which are relevant to a protein binding site. The
representation of protein flexibility by FT combines a variety of motions such as hinge
bending, flexible side-chain conformations and loop deformations which can be represented
by normal modes or essential dynamics. The FT parameterizes the flexibility subspace by a
relatively small number of variables. The values of these variables can be searched, in order
to find the minimal energy solution. The FLIPDock92 method uses two FT data structures,
representing the flexibility of both the ligand and the receptor. The right conformations are
then searched using a genetic algorithm and a divide and conquer approach, during the
docking process.

Many docking methods use Monte-Carlo methods in the final minimization step. For
example, Monte-Carlo minimization (MCM) is used in the refinement stage of
RosettaDock93, 94. Each MCM iteration consists of three steps: (1) random rigid-body
movements and backbone perturbation, in certain peptide segments which were chosen to be
flexible according to a flexibility analysis performed beforehand; (2) rotamer-based side-
chain refinement; (3) quasi-Newton energy minimization for relatively small changes in the
backbone and side-chain torsional angles, and for minor rigid-body optimization.

Some docking methods93 simply ignore flexible loops during the docking and rebuild them
afterwards in a loop modeling5, 95 step.
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4 Handling Side-Chain Flexibility in Docking Methods
The majority of the methods handle side-chain flexibility in the refinement stage. Each
docking candidate is optimized by side-chain movements.Figure 5 (a) shows a non-
optimized conformation of a ligand residue, which clashes with the receptor's interface, and
a correct prediction of its bound conformation by a side-chain optimization algorithm. Most
conformational changes occur in the interface between the two binding proteins. Therefore,
many methods try to predict side-chain conformational changes for a given backbone
structure in the interaction area. The problem has been widely studied in the more general
context of side-chain assignment on a fixed backbone in the fields of protein design and
homology modeling. Therefore, all the algorithms reviewed in this section apply to side-
chain refinement in both folding and docking methods.

To reduce the search space, most of the methods use rotamer discretization. Rotamer
libraries are derived from statistical analysis of side-chain conformations in known high-
resolution protein structures. Backbone-dependent rotamer libraries contain information on
side-chain dihedral angles and rotamer populations dependent on the backbone
conformation96. Usually, unbound conformations of side-chains are added to the set of
conformers for each residue. In this way a side-chain can remain in its original state if the
unbound conformer is chosen by the optimization algorithm.

4.1 Global Optimization Algorithms for Side-Chain Refinement
The side-chain prediction problem can be treated as a combinatorial optimization problem.
The goal is to find the combination of rotamer assignments for each residue, with the global
minimal energy denoted as GMEC (Global Minimal Energy Conformation). The energy
value of GMEC is calculated as follows:

1

where E(ir) is the self energy of the assignment of rotamer r for residue i. It includes the
interaction energy of the rotamer with a fixed environment. E(ir, js) is the pair-wise energy
between rotamer r of residue i and rotamer s of residue j. For each residue one rotamer
should be chosen, and the overall energy should be minimal. This combinatorial
optimization problem was proved to be NP-hard97 and inapproximable98. In practice,
topological restraints of residues can facilitate the problem solution.

In branch-and-bound algorithms 99 all possible conformations are represented by a tree.
Each level of the tree represents a different residue and the order of the nodes at this level is
the number of possible residue rotamers. Scanning down the tree and adding self and
pairwise energies at each level will sum up to the global energy values at the leafs. A
branch-and-bound algorithm can be performed by using a bound function100, 101. A
proposed bound function is defined for a certain level, and yields a lower bound of energy,
obtainable from any branch below this level. This level bound function is added to the
cumulative energy in the current scanned node and the branch can be eliminated if the value
is greater than a previously calculated leaf energy.

The dead-end elimination (DEE) method102 is based on pruning the rotamers, which are
certain not to participate in GMEC, because better alternatives can be chosen. The Goldstein
DEE103 criterion removes a rotamer from further consideration if another rotamer of the
same residue has a lower energy for every possible rotamer assignment for the rest of the
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residues. A more powerful criterion for dead-end elimination is proposed in the “split
DEE”104, 105 method (Figure 6). Many methods use DEE as a first stage in order to reduce
a conformational search space.

In addition to the rotamer reduction method by DEE, many methods also use a residue
reduction procedure, which eliminates residues with a single rotamer or with up to two
interacting residues (neighbors). A residue with a single rotamer can be eliminated from
further consideration by incorporating its pairwise energies into the self energies of its
neighbors101. A residue with one neighbor can be reduced by adding its rotamer energies to
the self-energies of its neighbor's rotamers101. A residue with two neighbors can be
eliminated by updating the pairwise energies of the neighbors106. The Residue-Rotamer-
Reduction (R3) method107 repeatedly performs residue and rotamer reduction. When a
reduction is not possible in a certain iteration, the R3 method performs residue
unification108, 103. In this procedure, two residues are unified and a set of all their possible
rotamer pairs is generated. The method finds the GMEC in a finite number of elimination
iterations, because at least one residue is reduced in each iteration107.

Bahadur et al.109 have defined a weighted graph of non-colliding rotamers. In this graph the
vertices are rotamers and two rotamers are connected by an edge if they represent different
residues that do not have steric clashes. The weights on the edges correspond to the strength
of the interaction between two rotamers. The algorithm searches for the maximum edge-
weight clique in the induced graph. If the size of the obtained clique equals the number of
residues, then each residue is assigned with exactly one rotamer. Since each two nodes in the
clique are connected, none of the chosen rotamers collide. Thus, the obtained clique defines
a feasible conformation and the maximum edge-weight clique corresponds to the GMEC.

The SCWRL101 algorithm uses a residue interaction graph in which residues with clashing
rotamers are connected. The resulting graph is decomposed to biconnected components
(seeFigure 7 (a, b)) and a dynamic programming technique is applied to find a GMEC. Any
two components include at most one common residue - the articulation point. It starts by
optimizing the leaf components, which have only one articulation point. The component's
GMEC is calculated for each rotamer of the articulation point and is stored as the energy of
the compatible rotamer for further GMEC calculations of adjacent components.Figure 7 (a,
b) demonstrate the decomposition of a residue interaction graph into components. The
drawback of the method is that it might include large components, which increase
dramatically the CPU time. SCATD106 proposes an improvement of the SCWRL
methodology by using a tree decomposition of the residue interaction graph. This method
results in more balanced decomposition and prevents creation of huge components, as
opposed to biconnected decomposition. After this decomposition, any two components can
share more than one common residue (Figure 7 c). Therefore, the component GMEC is
calculated for every possible combination of these common residues and stored for further
calculations.

Recent methods use the mixed-integer linear programming (MILP) framework110, 111,
112, 113 to find a GMEC. In general, a decision variable is defined for each rotamer and
rotamer-rotamer interaction. If a rotamer participates in GMEC, its corresponding decision
variables will be equal to 1. Each decision variable is weighted by its score (self and pair-
wise energies) and summed in a global linear expression for minimization. Constraints are
set in order to guarantee one rotamer choice for each residue, and that only pair-wise
energies between the selected rotamers are included in the global minimal energy. Although
the MILP algorithm is NP-hard, by relaxation of the integrality condition on the decision
variables, the polynomial-complexity linear programming algorithm can be applied to find
the minimum. If the solution happens to be integral, the GMEC is found in polynomial time.
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Otherwise, an integer linear programming algorithm, with significantly longer running time,
is applied. The MILP framework allows obtaining successive near-optimal solutions by
addition of constraints that exclude the previously found optimal set of rotamers112. The
FireDock113 method for refinement and scoring of docking candidates uses the MILP
technique for side-chain optimization. An example of a successful rotamer assignment by
FireDock is shown inFigure 5(a).

In general, for all methods which use pair-wise energy calculations, a prefix tree data
structure (trie) can be used for saving CPU time114. In a trie data structure, the inter-atomic
energies of rotamers' parts, which share the same torsion angles, are computed once.

Many of the described methods efficiently find a GMEC due to the use of a simplified
energy function, which usually includes only the repulsive van der Waals and rotamer
probability terms. The energy function can be extended by additional terms, like the
attractive van der Waals, solvation and electrostatics. However, this complicates the
problem. The SCWRL/SCATD graph decomposition results in larger components, the
number of decision variables in the MILP technique increases, etc. For example, Kingsford
et al.112 use only van der Waals and rotamer probability terms and almost always succeed
in finding the optimal solution by polynomial LP. However, when adding electrostatic term,
non-polynomial ILP is often required.

A performance comparison of R3107, SCWRL101 and MILP112 methods was
performed107, 112. The first test set included 25 proteins115. The differences in the
prediction ability of the methods were minor, since they all find a GMEC and use a similar
energy function. The time efficiency of the R3 and SCWRL methods was better than of
MILP for these cases. The second test set of 5 proteins was harder101 and the R3 method
performed significantly faster than SCWRL and MILP. In addition, Xu106 demonstrated
that the SCATD method shows a significant improvement in CPU time compared to
SCWRL for the second test set.

4.2 Heuristic Methods for Treating Side-Chain Flexibility
Heuristic algorithms are widely used in side-chain refinement methods because of the
following reasons. First, a continuous conformational space can be used during the
minimization, as opposed to global optimization algorithms, where the conformational space
has to be reduced to a pre-defined discrete set of conformers. Second, different energy
functions can be easily incorporated into heuristic algorithms, while global optimization
methods usually require a simplified energy function. A third advantage is that heuristic
algorithms can provide many low-energy solutions, while most of the global algorithms
provide a single one. However, the main drawback of the heuristic methods is that they
cannot guarantee finding the GMEC.

Monte Carlo (MC)116 is an iterative method. At each step it randomly picks a residue and
switches its current rotamer by another. The new overall energy is calculated and the
conformational change is accepted or rejected by the Metropolis criterion117. In simulated
annealing MC, the Boltzman temperature is high at the beginning to overcome local minima.
Then, it is gradually lowered in order to converge to the global minimum. Finally, a quench
step can be performed. The quench step cycles through the residues in a random order, and
for each residue, the best rotamer for the overall energy is chosen. RosettaDock118 uses this
rotamer-based MC approach and, in addition, performs gradient-based minimization in
torsion space of dihedral angles.

The self-consistent mean-field (SCMF) optimization method 119, 120 uses a matrix which
contains the probability of each rotamer to be included in the optimal solution. Each rotamer
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probability is calculated by the sum of its interaction energies with the surrounding
rotamers, weighted by their respective probabilities. The method iteratively refines this
matrix and converges in a few cycles. The 3D-DOCK121 package uses the mean-field
approach for side-chain optimization with surrounding solvent molecules.

Other optimization techniques like genetic algorithms122 and neural networks123 are also
applied to predict optimal conformations of side-chains. Several methods do not restrict the
conformational search to rotamers124, 125. Abagyan et al.126, 125(ICM-DISCO127, 128)
apply the biased probability MC method for minimization in the torsion angles space.
Molecular dynamics simulations, described in Section 2.2, are also used to model flexibility
of side-chains. SmoothDock129, 11 uses short MD simulations to predict conformations of
anchor side-chains130 at the pre-docking phase. HADDOCK32, 33 uses restricted MD
simulations for final refinement with explicit solvent.

Obviously, an energy function has great influence on side-chain prediction performance.
Yanover et al.131 showed that finding a GMEC does not significantly improve side-chain
prediction results compared to the heuristic RosettaDock side-chain optimization. They
showed that using an optimized energy function has much greater influence on the
performance than using an improved search strategy.

Recent studies have shown that most of the interface residues do not undergo significant
changes during binding130, 132, 64, 113. Therefore, changing unbound conformations
should be performed carefully during the optimization process118, 113. In addition, when
analyzing the performance of side-chain optimization methods, unbound conformations of
side-chains should be used as a reference118, 113.

5 Handling both backbone and side-chain flexibility in recent CAPRI
challenges

In recent CAPRI (Critical Assessment of PRediction of Interactions) challenges133, some of
the participating groups attempted to handle both backbone and side-chain flexibility. Many
groups treated conformational deformations by generating ensembles of conformations,
which were later used for cross-docking. Additionally, some methods, specified below,
handle protein flexibility during the docking process or in a refinement stage.

The group of Bates134 used MD for generating ensembles of different conformations for the
receptor and the ligand. Then, rigid body cross-docking was performed by the FTdock
method70. The best results were minimized by CHARMM135, and clustered. Finally, a
refinement by MD was performed. It has been shown that the cross-docking produced more
near native results compared to unbound docking only in cases where the proteins undergo
large conformational changes upon binding134. Similar conclusions were obtained by Smith
et al.64.

The ATTRACT docking program136, 51 uses a reduced protein model, which represents
each amino acid by up to three pseudo atoms. For each starting orientation, energy
minimization is performed on six rigid-body degrees of freedom and on additional five
degrees of freedom derived from the five lowest frequency normal modes. Finally the side-
chain conformations at the interface of each docking solution are adjusted using the Swiss-
PdbViewer137, and the Sander program from the Amber8 package138 is used for a final
minimization.

The RosettaDock method94, 93 performs an initial low-resolution global docking, which
includes a Monte Carlo (MC) search with random backbone and rigid-body perturbations.
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The low energy docking candidates are further refined by Monte-Carlo minimization
(MCM). Each MCM cycle consists of: (i) backbone and/or rigid-body perturbation, (ii)
rotamer-based side-chain optimization and (iii) quasi-Newton minimization on the degrees
of freedom of the backbone and/or side-chains and/or rigid-body orientation.

The HADDOCK protocol33 consists of rigid-body docking followed by a semi-flexible
refinement of the interface in torsion angles' space (of both backbone and side-chains). As a
final stage, a Cartesian dynamics refinement in explicit solvent is performed.

To conclude, the treatment of internal flexibility can be performed in different stages of the
docking process and in different combinations. In many cases, backbone flexibility is treated
before the side-chain flexibility. For example, an ensemble of backbone conformations is
often created before the docking procedure. In addition, some methods, like ATTRACT and
RosettaDock, perform backbone minimization prior to further refinement. There are two
reasons for this order of handling flexibility: (i) the backbone deformations have greater
influence on the protein structure than the side-chain movements; (ii) side-chain
conformations often depend on the backbone torsion angles. On the other hand, in the final
refinement stage, leading docking groups attempt to parallelize the treatment of all the
degrees of freedom, including full internal flexibility and rigid-body orientation. CAPRI
challenges still show unsatisfying results for cases with significant conformational changes.
Therefore the optimal way to combine side-chain and backbone optimization methods is still
to be found, and further work in this direction is required.

6 Discussion
Protein flexibility presents a great challenge in predicting the structure of complexes. This
flexibility includes both backbone and side-chain conformational changes, which increase
the size of the search space considerably. In this paper we reviewed docking methods that
handle various flexibility types which are used in different stages of the docking process.
These are summarized in the flowchart inFigure 8.Table I, Table II andTable III briefly
specify the algorithmic approaches of these methods.

The flexible docking process is divided into three major stages. In the first stage the
flexibility of the proteins is analyzed. Hinge points can be detected by Ensemble Analysis,
GNM or Rigidity Theory. Flexible loops can be identified by MD or Rigidity Theory.
Additionally, general conformational space can be defined by NMA, MD or Essential
Dynamics. In the second stage the actual docking is performed. If hinges were identified, the
sub-domains can be docked separately. Furthermore, an ensemble of conformations can be
generated, according to the results of the flexible analysis, and docked using cross-docking
or the Mean Field approach. The docking candidates generated in this stage are refined in
the third stage. This stage refines the backbone, side chains and rigid-body orientation.
These three can be refined separately in an iterative manner or simultaneously. Backbone
refinement can be performed by normal modes minimization. Side-chain optimization can
be achieved by methods like MC, graph theory algorithms, MILP, and the Mean Field
approach. The refinement of the orientation can be done by a variety of minimization
methods such as Steepest Descent139, Conjugate Gradient140, Newton-Raphson, Quasi-
Newton141 and Simplex142. Simultaneous refinement can be performed by methods like
MD, MC and genetic algorithms. The final refined docking candidates are scored and
ranked.

In spite of the variety of methods developed for handling protein flexibility during docking,
the challenge is yet far from resolved. This can be observed from the CAPRI results143,
144, 133, where in cases with significant conformational changes the predictions were
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dissatisfying. Modeling backbone flexibility is currently the main challenge in the docking
field and is addressed by only a few methods. In contrast, side-chain flexibility is easier to
model and encouraging results have been achieved. The rigid-body optimization stage plays
an important role in flexible docking refinement, and contributes considerably to docking
prediction success113. However, we believe that in order to achieve the best flexible
refinement results, the refinement of the backbone, side-chains and rigid-body orientation
need to be parallelized. Parallel refinement will best model the induced fit process that
proteins undergo during their interaction.

Another major obstacle in the flexible docking field is the poor ranking ability of the current
scoring functions. Adding degrees of freedom of protein flexibility to the search space
increases the number of false-positive solutions. Therefore, a reliable energy function is
critical for the correct model discrimination. The near-native solutions can be identified not
only by their energies, but also by the existence of energy binding funnels11, 10. Since the
ranking ability of the current methods is dissatisfying, further work in this field is required.

Finally, we would like to emphasize that although modeling internal flexibility is essential
for general docking predictions, rigid docking is also extremely important. In many known
cases the structural changes that occur upon binding are minimal, and rigid-docking is
sufficient145, 146. The benefits of the rigid procedure are its simplicity and relatively low
computational time. In addition, a reliable rigid docking algorithm is essential for generating
good docking candidates for further flexible refinement.
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ABNR A dopted Basis Newton-Raphson

ACE Atomic Contact Energy

ANM Anisotropic Network Model

DEE Dead-End Elimination

FT Flexible Tree

GMEC Global Minimal Energy Conformation

GNM Gaussian Network Model

MC(M) Monte Carlo (Minimization)

MD Molecular Dynamics

MILP Mixed-Integer Linear Programming

NMA Normal Modes Analysis

PCA Principal Component Analysis

Andrusier et al. Page 15

Proteins. Author manuscript; available in PMC 2009 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



SASA Solvent-Accessible Surface Area

SCMF Self-Consistent Mean-Field

vdW Van der Waals
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Figure 1.
Protein flexibility types. (a,b) Shear motion, demonstrated in two conformations of S100
Calcium sensor (PDB-id: 1K9P, 1K9K). The blue helix “slides” on the rest of the protein.
(c,d) Hinge motion, demonstrated in two conformations of LAO binding protein (PDB-id:
1LAO, 1LAF). The hinge location is shown as a green sphere. (e) Flexible loop in the
ribosomal protein L1 (PDB-id: 1FOX). The different conformations of the loop were
determined experimentally by NMR.
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Figure 2.
A general scheme of flexible docking procedure. (a) Protein flexibility analysis methods are
described in section 2. (b) Rigid docking with soft interface, ensemble docking of different
conformations and backbone refinement methods are described in section 3. (c) Side-chain
refinement methods are described in section 4. (d) Rigid body optimization methods are
mentioned in the discussion.
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Figure 3.
An example of a simplified spring model generated from a short polypeptide chain by
connecting every pair of Cα atoms within a distance threshold by a spring. (a) The
polypeptide chain. (b) The spring model. The normal modes calculated from this spring
model describe its possible movements around the equilibrium conformation. Normal modes
were shown to correlate with experimentally observed conformational changes of proteins.
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Figure 4.
(a) The unbound conformation of Replication Protein A in red and blue (PDB-id: 1FGU)
and its target DNA strand in green. The figure shows the unbound conformation of the
protein after superimposing it on its bound conformation in the solved complex structure
(The superpostion was performed for visualization purpose only). (b) The bound
conformation of Replication Protein A in red and blue (PDB-id: 1JMC) and the predicted
bound conformation by FlexDock86 in cyan.
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Figure 5.
A correct prediction of a hot-spot residue (Arg15) by the FireDock side-chain
optimization113.
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Figure 6. Split DEE
All possible conformations are divided into two subsets by fixing the rotamer of residue k to
v1 or v2. For residue i the rotamer t1 dominates the rotamer r in the first subset of
conformations. For the second subset, the rotamer t2 has a lower energy than r. Therefore,
rotamer r which could not be eliminated by regular DEE, can be removed by split DEE.
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Figure 7.
(a) Residue interaction graph. (b) SCWRL biconnected components: abcd and def with
articulation point d. The SCWRL algorithm can start by optimizing the component def. For
each rotamer of d, the GMEC of def is calculated while d is fixed. After this calculation the
component def is collapsed into the rotamers of d. (c) SCATD tree decomposition. The
articulation points are presented on the edges.
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Figure 8.
A summary of methods for handling flexibility during docking, which are reviewed in the
paper. The methods handle various flexibility types and are used in different stages of the
docking process. Docking applications which implement the algorithmic methods are in
brackets.
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Table I

Some Methods for Flexibility Analysis

Method Flexibility Type Description

DynDom17 Hinge bending Given two conformations, cluster rotation vectors of short backbone segments and detects the rigid
domains.

HingeFind18 Hinge bending Compares given conformational states using sequence alignment and detects hinge locations.

FlexProt20, 21 Hinge bending Compares given conformational states, pre-forms structural alignment and detects hinge locations.

HingeProt48 Hinge bending Detects hinge locations using GNM.

CONCOORD61 General flexibility Generate conformations that fulfill distance constraints.

Dynamite63 General flexibility Generate conformations using the essential dynamics approach.

FIRST65 General flexibility Identifies rigid and flexible substructures using Rigidity Theory.
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Table II

Some Methods for Docking with Backbone Flexibility

Method Flexibility Type Description

MC281 Flexible loops Chooses the best loop conformations from an ensemble using the Mean-Field approach.

ATTRACT83, 51 Flexible loops Chooses the best loop conformations from an ensemble using the Mean-Field approach.

General flexibility Energy minimization on degrees of freedom derived from the lowest frequency normal modes.

FlexDock86 Hinge bending Allows hinge bending in the docking. The rigid subdomains are docked separately and
consistent results are assembled.

FLIPDock92 General flexibility Searches favored conformations by a genetic algorithm and a divide and conquer approach.
Uses FT data structure.

HADDOCK32, 33 General flexibility Handles backbone flexibility in the refinement stage, by simulated annealing MD.

RosettaDock10, 118, 93 General flexibility Handles backbone flexibility in the refinement stage, by Monte Carlo minimization.
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Table III

Some Docking and Refinement Methods with Side-Chain and Rigid-Body Optimization

Method Side-Chain Flexibility Rigid-Body Optimization Scoring Function Terms

RosettaDock10, 118, 93 MC on rotamers and
minimization of rotamer
torsion angles

MC with DFP quasi-Newton
minimization147, 148

linear repVdW, attrVdW, EEF1
(SASA), rotamer probability,
hydrogen bonds, residue pair
potentials and electrostatics

ICM-DISCO128 biased probability MC on internal coordinates truncated VdW, electrostatics,
solvation, hydrogen bonds and
hydrophobicity

3D-DOCK121 SCMF steepest-descent minimization139 VdW, electrostatics and Langevin
dipole solvation

SmoothDock129, 11 pre-docking MD and ABNR
minimization in the refinement

simplex142 and ABNR minimization VdW, electrostatics and ACE

HADDOCK32, 33 simulated annealing MD steepest-descent minimization139 VdW, electrostatics, binding site
restriction and buried surface area

RDOCK149 ABNR minimization electrostatics and ACE

FireDock113 MILP MC with BFGS quasi-Newton
minimization150, 151

linear repVdW, attrVdW, ACE,
electrostatics, π-stacking and aliphatic
interactions, hydrogen and disulfide
bonds and Insideness measure
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